This paper proposes a new triple-band monopole antenna based on Complementary Split Ring Resonators (CSRR) perturbing the ground plane (GND). The antenna consists of an inverted-L-shaped monopole fed by a modified microstrip line with two CSRRs cut out of the ground plane. The operational bands are independently controlled by the CSRR unit cell parameters. In addition, the antenna presents a dual-polarization performance (vertical polarization at 2.4 GHz band and horizontal polarization at both 3.6 and 5.9 GHz bands). The designed antenna is fully planar and low profile avoiding the vias with the ground plane and covering the WLAN, WiMAX, and IEEE 801.11p bands at 2.45, 3.6, and 5.8 GHz. A compact prototype (0.32λ 0 × 0.32λ 0 being λ 0 is the wavelength corresponding to the lowest resonance frequency) has been fabricated and measured showing good agreement between simulations and measurements. The measured impedance bandwidths are 10% (2.38-2.63 GHz), 2.5% (3.54-3.63 GHz), and 20% (5.83-7.12 GHz) whereas the measured gains are 1.34, 0.68, and 2.65 dBi at 2.4, 3.6, and 5.9 GHz respectively.
This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.