Aims/hypothesis: Variation in the human apolipoprotein (APO) A5 gene (APOA5) is associated with elevated plasma triglycerides. However, data on the exact role of plasma concentrations of APOA5 in human triglyceride homeostasis are lacking. In the present study, we estimated plasma APOA5 levels in patients with type 2 diabetes at baseline and during atorvastatin treatment, a lipid-lowering treatment that results in a reduction in plasma triglycerides and APOC3. Subjects, materials and methods: Plasma APOA5 concentration was measured by ELISA in 215 subjects with type 2 diabetes, who were taken from the Diabetes Atorvastatin Lipid-lowering Intervention (DALI) study, a 30-week randomised, double-blind, placebo-controlled study, and given atorvastatin 10 mg or 80 mg daily. Results: At baseline, average plasma APOA5 concentration was 25.7±15.6 μg/100 ml. Plasma APOA5 (R s =0.40), APOC3 (R s =0.72) and APOE (R s =0.45) were positively correlated with plasma triglyceride levels (all p<0.001). In multiple linear regression analysis, adjusted for age and sex, the variation in plasma triglycerides was explained mostly by APOC3 (52%) and only to a small extent by APOA5 (6%) and APOE (1%). Atorvastatin treatment decreased plasma triglycerides, APOA5, APOC3 and APOE (all p<0.0001). After treatment, APOC3 remained the major determinant of plasma triglyceride levels (59%), while the contributions of APOA5 and APOE were insignificant (2 and 3%). Conclusions/interpretation: Our findings reveal a positive association between plasma APOA5 and triglycerides in patients with type 2 diabetes. Treatment with atorvastatin decreased plasma APOA5, APOC3, APOE and triglycerides. In contrast to APOC3, APOA5 is not a major determinant of triglyceride metabolism in these patients.