Animal models of cancer provide fundamental insight into the cellular and molecular mechanisms of human cancer development. As an alternative to genetically engineered mouse models, increasing evidence shows that tissue recombination and transplantation models represent an efficient approach to faithfully recapitulate solid epithelial cancer in mice. Cancer can be rapidly initiated through lentiviral delivery of defined genetic alterations into target cells that are grown in a physiological milieu with an appropriate epithelial-stromal interaction. Through genetic manipulation of distinct subpopulations of epithelial cells and mesenchymal cells, this powerful system can readily test both cell-autonomous roles of genetic events in the epithelial compartment and the paracrine effects of the microenvironment. Here we review the recent advances in mouse models of several epithelial cancers achieved using orthotopic transplantation and tissue recombination strategies, with an emphasis on the dissociated cell in vivo prostate regeneration model to investigate prostate cancer.