2017
DOI: 10.1039/c6nr07258e
|View full text |Cite
|
Sign up to set email alerts
|

Single-electron tunneling through an individual arsenic dopant in silicon

Abstract: We report the single-electron tunneling behaviour of a silicon nanobridge where the effective island is a single As dopant atom. The device is a gated silicon nanobridge with a thickness and width of ∼20 nm, fabricated from a commercially available silicon-on-insulator wafer, which was first doped with As atoms and then patterned using a unique CMOS-compatible technique. Transport measurements reveal characteristic Coulomb diamonds whose size decreases with gate voltage. Such a dependence indicates that the is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
18
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
10

Relationship

1
9

Authors

Journals

citations
Cited by 48 publications
(19 citation statements)
references
References 35 publications
0
18
0
1
Order By: Relevance
“…Среди всех устройств наиболее чувствительным полевым/зарядовым сенсором является одноэлектронный транзистор, работающий только при очень низких температурах [22]. При уменьшении разме-ра канала-нанопровода до 20 − 30 nm одноэлектронный транспорт в нем реализуется через одиночные примесные атомы [23][24][25]. Полевые транзисторы работают в широком диапазоне температур от миликельвин до комнатной температуры.…”
Section: Introductionunclassified
“…Среди всех устройств наиболее чувствительным полевым/зарядовым сенсором является одноэлектронный транзистор, работающий только при очень низких температурах [22]. При уменьшении разме-ра канала-нанопровода до 20 − 30 nm одноэлектронный транспорт в нем реализуется через одиночные примесные атомы [23][24][25]. Полевые транзисторы работают в широком диапазоне температур от миликельвин до комнатной температуры.…”
Section: Introductionunclassified
“…Recently the potential of quantum information processing and quantum computation results in numerous proposals of specific material systems for creation and manipulation under spin and charged states in solids 1,2 . One of the key problems in this area is a development of efficient methods of preparation and detection of many electron states with different spin value and orientation 3–9 .…”
Section: Introductionmentioning
confidence: 99%
“…Such structures are present almost everywhere, be it a phone or a car, in the form of various micron-scale accelerometers, gyroscopes, etc. Today, when electronic devices make use of the properties of individual atoms and molecules [5][6][7], applications of nanoelectromechanical systems include ultrasensitive detection of mass, down to the mass of single molecules [8,9], force [10], pressure [11] and displacement [12,13]. By coupling nanomechanical resonators with optical and electronic transducers, it became possible to explore various quantum effects [14][15][16].…”
Section: Introductionmentioning
confidence: 99%