-Stream development can generate environmental changes that impact fish communities. In temperate streams, the distribution of fish species is associated with environmental gradients. To analyze the relevant factors, large-scale exploration is required. Thus, to evaluate the distribution patterns of fish in Korea, sampling was conducted on a national scale at 720 sites over a 6-week period in 2009. A total of 124 fish species in 27 families were identified; Zacco platypus and Zacco koreanus of the Cyprinidae were the dominant and subdominant species, respectively. Of the species found, 46 (37.1%) were endemic and 4 (3.2%) exotic; of the latter, Micropterus salmoides and Lepomis macrochirus were widely distributed. Upon canonical correspondence analysis (CCA), both altitude and biological oxygen demand (BOD) were highly correlated with CCA axes 1 and 2, respectively. This explained 62.5% of the species-environment relationship. Altitude and stream order were longitudinally related to species distribution. The numbers of both total and endemic species gradually increased as streams grew in size to the fourth-fifth-order, and decreased in sixth-order, streams. Overall, fish communities were stable throughout the entire watershed, whereas some species showed site-specific occurrence patterns due to the paleogeomorphological characteristics of Korean peninsula. However, various anthropogenic activities may negatively affect fish communities. Therefore, both short-and long-term sustainable management strategies are required to conserve native fish fauna.