2017
DOI: 10.1093/gbe/evx107
|View full text |Cite
|
Sign up to set email alerts
|

Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity

Abstract: The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technolog… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
78
0
2

Year Published

2018
2018
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 76 publications
(84 citation statements)
references
References 62 publications
(119 reference statements)
3
78
0
2
Order By: Relevance
“…The application of the NGS techniques has enabled access to large amounts of data and has helped resolve the basal polytomies in certain groups of organisms where traditional Sanger approaches using analyses of multiple‐genes failed (e.g., Graminoids, Leseber & Duvall, ; Rhinoceroses, Willerslev et al, ; Pentapetaleae, Moore et al, ; Paserida, Nabholz et al, ; Neoaves, Pacheco et al, ; Malpighiales, Xi et al, ; Commelinids, Barrett et al, ; Guenons, Guschanski et al, ; Zingiberales, Barrett et al, , Sass et al, ; Ipomeeae, Eserman et al, ; Arundinarieae, Ma et al, ; Apocynaceae, Straub et al, ; Asteraceae, Mandel et al, ; Goodeniaceae, Gardner et al, ; Columbiforms, Soares et al, ; Vitales, Zhang et al, , Wen et al, ; Eupolypod II Ferns, Wei et al, ; Hippeastreae, García et al, ; Protea , Mitchell et al, ). Most of these studies concluded in favor of the radiation hypothesis, since the NGS analysis of complete chloroplast genomes and large nuclear data sets yielded short deep branches (Leseber & Duvall, ; Moore et al, ; Nabholz et al, ; Xi et al, ; Guschanski et al, ; Straub et al, ; Mandel et al, ; Gardner et al, ; Sass et al, ; Soares et al, ; Zhang et al, ; García et al, ; Mitchell et al, ) or non‐fully resolved trees (Willerslev et al, ; Barrett et al, , ; Ma et al, ; Wei et al, ). A previous phylogenetic study based on seven DNA regions proposed a burst of diversification for the origin of the Asian Palmate group (Valcárcel et al, ).…”
Section: Discussionmentioning
confidence: 99%
“…The application of the NGS techniques has enabled access to large amounts of data and has helped resolve the basal polytomies in certain groups of organisms where traditional Sanger approaches using analyses of multiple‐genes failed (e.g., Graminoids, Leseber & Duvall, ; Rhinoceroses, Willerslev et al, ; Pentapetaleae, Moore et al, ; Paserida, Nabholz et al, ; Neoaves, Pacheco et al, ; Malpighiales, Xi et al, ; Commelinids, Barrett et al, ; Guenons, Guschanski et al, ; Zingiberales, Barrett et al, , Sass et al, ; Ipomeeae, Eserman et al, ; Arundinarieae, Ma et al, ; Apocynaceae, Straub et al, ; Asteraceae, Mandel et al, ; Goodeniaceae, Gardner et al, ; Columbiforms, Soares et al, ; Vitales, Zhang et al, , Wen et al, ; Eupolypod II Ferns, Wei et al, ; Hippeastreae, García et al, ; Protea , Mitchell et al, ). Most of these studies concluded in favor of the radiation hypothesis, since the NGS analysis of complete chloroplast genomes and large nuclear data sets yielded short deep branches (Leseber & Duvall, ; Moore et al, ; Nabholz et al, ; Xi et al, ; Guschanski et al, ; Straub et al, ; Mandel et al, ; Gardner et al, ; Sass et al, ; Soares et al, ; Zhang et al, ; García et al, ; Mitchell et al, ) or non‐fully resolved trees (Willerslev et al, ; Barrett et al, , ; Ma et al, ; Wei et al, ). A previous phylogenetic study based on seven DNA regions proposed a burst of diversification for the origin of the Asian Palmate group (Valcárcel et al, ).…”
Section: Discussionmentioning
confidence: 99%
“…Therefore, the sister relationship between the DMPP clade and the remaining Tectariaceae s.l., in spite of the largest character and taxon sampling applied to this question so far, remains uncertain, which is unique for any families of lycophytes and ferns recognized in the classification proposed by PPG I (). Even Athyriaceae, sometimes not strongly supported as monophyletic (e.g., Rothfels et al, ), have been strongly supported to be monophyletic recently (Wei et al, ).…”
Section: Discussionmentioning
confidence: 99%
“…It was shown that the rpo genes are highly variable and reliable phylogenetic markers, effective in the reconstruction of interrelations of species belonging to the same genus (Krawczyk and Sawicki 2013). A high level of polymorphism of ndh, rpoC2, rbcL and ycf1 genes is also demonstrated in other studies (Wei et al, 2017;Joseph et al, 2013;Benkeblia, 2014).…”
Section: Resultsmentioning
confidence: 70%