This work reports an extensive optical study of a series of In(As,P)/InP strained quantum wells grown by gas source molecular beam epitaxy with various thicknesses and compositions. Thermally detected optical absorption, reflectance, and photoreflectance measurements have been performed in order to determine all the exciton energies. An envelope function model including band nonparabolicity, intervalence band coupling, and also possible group V element exchange at the interfaces, is used to interpret the experimental data. The fit of the optical transition energies leads to an accurate determination of the crucial structural and optical parameters. The arsenic concentration inside the wells is evaluated and the conduction band offset ratio (Qc=0.70) as well as the bowing parameter of In(As,P) (C=0.14 eV) are determined. These studies also provide useful information about the nanometer-scale P–As interface mixing.