2020
DOI: 10.1016/j.geog.2019.11.002
|View full text |Cite
|
Sign up to set email alerts
|

Performance evaluation of neural network TEC forecasting models over equatorial low-latitude Indian GNSS station

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
11
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 30 publications
(13 citation statements)
references
References 24 publications
0
11
0
Order By: Relevance
“…7). The ML models have been compared with several conventional non-ML models: regression model [14,80,101,159,160], brute force approach [143], traditional statistical approaches [60,94,[161][162][163][164], classical KF [129], Bayes-optimal rule [118], least square (LS)-based approach [40], Saastamoinen model [110], autoregressive model and a traditional LEO propagation model (EKF-STAN) [146], conventional wind speed retrieval method [43], Maximum-Likelihood Power-Distortion (PD-ML) [165], BERNESE 5.2 [114], CYGNSS [44], Hydrostaticseasonal-time (HST) model [49], Statistical Theta method [51][52][53]166], MAPGEO2004 geoid model [73], GNSS-IR soil moisture [58], Autoregressive (AR) and Autoregressive Moving Average (ARMA) [167], ERA-Interima global atmospheric reanalysis (now ERA5 reanalysis) [107], Empirical linear algorithms (LRM and LLM) [59], International Reference Ionosphere (IRI) 2016 model [168], NeQuick and IRI-2001 global TEC model [169][170][171], EKF-based integration scheme [172], CODE GIMs (Global Ionospheric Maps) [173], autoregressive integrated moving average (ARIMA), and quadratic polynomial (QP) models [174], least square regression algorithms (LSR) and bi-ha...…”
Section: E ML Vs Non-ml Models (Rq4a)mentioning
confidence: 99%
“…7). The ML models have been compared with several conventional non-ML models: regression model [14,80,101,159,160], brute force approach [143], traditional statistical approaches [60,94,[161][162][163][164], classical KF [129], Bayes-optimal rule [118], least square (LS)-based approach [40], Saastamoinen model [110], autoregressive model and a traditional LEO propagation model (EKF-STAN) [146], conventional wind speed retrieval method [43], Maximum-Likelihood Power-Distortion (PD-ML) [165], BERNESE 5.2 [114], CYGNSS [44], Hydrostaticseasonal-time (HST) model [49], Statistical Theta method [51][52][53]166], MAPGEO2004 geoid model [73], GNSS-IR soil moisture [58], Autoregressive (AR) and Autoregressive Moving Average (ARMA) [167], ERA-Interima global atmospheric reanalysis (now ERA5 reanalysis) [107], Empirical linear algorithms (LRM and LLM) [59], International Reference Ionosphere (IRI) 2016 model [168], NeQuick and IRI-2001 global TEC model [169][170][171], EKF-based integration scheme [172], CODE GIMs (Global Ionospheric Maps) [173], autoregressive integrated moving average (ARIMA), and quadratic polynomial (QP) models [174], least square regression algorithms (LSR) and bi-ha...…”
Section: E ML Vs Non-ml Models (Rq4a)mentioning
confidence: 99%
“…Artificial neural networks (ANN) can model the system with less information. With less or missing ionospheric TEC observation data, ANN can effectively establish TEC prediction models and complete TEC maps (Sivavaraprasad et al., 2020).…”
Section: Introductionmentioning
confidence: 99%
“…The ionosphere is an important region of earth space that is coupled upward with the magnetosphere and influenced downward by the lower atmosphere [7]. The ionosphere is also affected by solar activity and geomagnetic activity; thus, the ionosphere has very complex temporal and spatial variations [8]. With the increase in human space activities, the demand for monitoring and forecasting the ionospheric space environment is increasing.…”
Section: Introductionmentioning
confidence: 99%