2018
DOI: 10.9734/cjast/2018/44836
|View full text |Cite
|
Sign up to set email alerts
|

Performance Analysis of Bagging Feed-Forward Neural Network for Forecasting Building Energy Demand

Abstract: Forecast models play a fundamental role in anticipating the effects of the energy demand in buildings to addressing the energy crisis. A forecast model for anticipating from one to three days every 30 min of the building energy demand is presented. In this model, a feed-forward artificial neural network (ANN) is combined with bootstrap aggregation techniques, using a Box-Cox transformation, seasonal and trend decomposition using loess, and a moving block bootstrap technique. An analysis was conducted using the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 12 publications
0
1
0
2
Order By: Relevance
“…En otras palabras, la medida de desempeño se calculó considerando los documentos asociados a cada clúster o grupo. El índice H se calculó a partir de las citas de los artículos correspondientes a cada tema [29], [30].…”
Section: Cuadrante 3 (Q3)unclassified
“…En otras palabras, la medida de desempeño se calculó considerando los documentos asociados a cada clúster o grupo. El índice H se calculó a partir de las citas de los artículos correspondientes a cada tema [29], [30].…”
Section: Cuadrante 3 (Q3)unclassified
“…Los indicadores de desempeño como el RMSE (Raíz del error cuadrático medio) y el MAE (error absoluto medio) midieron la magnitud de los errores, donde un mejor modelo dará un valor menor [13]. Del mismo modo, el sesgo se medirá con el p-value, en el cual un mejor modelo dará un valor cercano a 0.…”
Section: A Selección Del Conjunto De Datosunclassified
“…The use of smart meters is not significant in some countries in developing state due their installation cost [1,2]. That is why, this research paper has treated the consumed energy forecasting goal to enhance the reliability of forecasted energy and the dynamic forecasting algorithms robustness, by the implementation of the necessary algorithms responsible for the energy forecasting [3][4] [5][6] [7]. Many works have treated the implementation of the forecasting algorithms for energy prediction and PV generation forecasting [10] [11][12] [13].…”
Section: Introductionmentioning
confidence: 99%