Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Graphical Abstract