2014
DOI: 10.1016/j.memsci.2014.05.003
|View full text |Cite
|
Sign up to set email alerts
|

Modification of ultrafiltration membranes via interpenetrating polymer networks for removal of boron from aqueous solution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
13
0
8

Year Published

2015
2015
2017
2017

Publication Types

Select...
5
2

Relationship

2
5

Authors

Journals

citations
Cited by 38 publications
(21 citation statements)
references
References 27 publications
0
13
0
8
Order By: Relevance
“…In semi‐IPNs, the hydroxyl‐terminated PDMS changed from flexible linear structure to the three‐dimensional network structure, as a result the concentration of the crosslinks increased. With the increase of PDMS content, the concentration of the crosslinks increases, so the flowability of the casting solution decreases, and the viscosity of the casting solution increases accordingly . From Figure , the viscosity of PDMS/PVDF casting solutions with semi‐IPNs structure was much bigger than that of the casting solution without the semi‐IPNs structure (shown in section 3.1 in literature).…”
Section: Resultsmentioning
confidence: 85%
“…In semi‐IPNs, the hydroxyl‐terminated PDMS changed from flexible linear structure to the three‐dimensional network structure, as a result the concentration of the crosslinks increased. With the increase of PDMS content, the concentration of the crosslinks increases, so the flowability of the casting solution decreases, and the viscosity of the casting solution increases accordingly . From Figure , the viscosity of PDMS/PVDF casting solutions with semi‐IPNs structure was much bigger than that of the casting solution without the semi‐IPNs structure (shown in section 3.1 in literature).…”
Section: Resultsmentioning
confidence: 85%
“…In semi‐IPNs, because of the existence of crosslinking agent, the linear pre‐crosslinking polymers can participate in the reactions of polymerization or crosslinking, which make it possible to create semi‐IPNs structure. With the increase in crosslinking agent, the concentration of cross‐links increases , so the liquidity of casting solution decreases, and the viscosity of the casting solution increases accordingly .…”
Section: Resultsmentioning
confidence: 99%
“…With the increase in TEOS content, the proportions of the sponge‐like pores increased. In addition, the semi‐IPN structure worked as a bridging point and improved the actuation strains of the membranes and also increased the elongation at break .…”
Section: Resultsmentioning
confidence: 99%
“…Sin embargo, las membranas basadas en estos últimos han adquirido especial interés comercial, a causa de su gran versatilidad molecular, facilidad de síntesis, modificación y moldeado [2]. Recientemente, dada la necesidad de desarrollar procesos de separación más selectivos, eficientes y duraderos, diversas investigaciones se han centrado en la modificación de membranas poliméricas con grupos específicos, con el objetivo de obtener de esta forma novedosos materiales funcionales, donde la membrana no solamente actúa como una barrera que permite únicamente el paso de compuestos de un tamaño definido, sino que, también tiene la capacidad de interaccionar de forma no covalente con estos, pasando de esta forma de un componente pasivo en la separación a un componente activo [3][4]. No obstante, este no es el único objetivo, también se han modificado membranas para el control del fouling o ensuciamiento, en especial para aquellas membranas empleadas en aplicaciones médicas y para el tratamiento de aguas residuales, donde la prevención del biofouling adquiere particular interés, ya que las incrustaciones de microorganismos en las membranas generan la liberación de sustancias poliméricas extracelulares, las cuales pueden generar bloqueos del poro, y por ende la disminución del flujo, incremento del consumo energético y una marcada disminución del tiempo de vida útil de las membranas [5][6].…”
Section: Introductionunclassified