ABSTRACT:The metal ion-binding properties of poly(sodium 4-styrenesulfonate) in conjunction with membrane filtration were investigated for Cu(II), Cd(II), Co(II), Cr(III), Hg(II), Ni(II), Pb(II), Zn(II), and Fe(II). Different experiments were carried out at different pH's, metal ion concentrations, polymer concentrations, and molecular weight fractions. Only Fe(II) and Cr(III) were retained at pH 1, which allows a selective separation of these metals from all the other metal ions. At pH 3 the retention ability of this polymer increased for all the metal ions. On the other hand, the metal ionretention properties are dependent on the polymer/metal ratio.
The binding of rhodamine B (RB) to the polyanion containing aromatic groups poly(sodium 4-styrenesulfonate) (PSS) is studied by separation and spectroscopic techniques at pH between 2 and 7. Significant binding is found at pH below 5, together with a red-shift of the RB maximum of absorbance to 564 nm, and RB fluorescence quenching. The dependence of the pH is related with protonation of RB molecules. Fluorescence quenching is a consequence of a more hydrophobic environment and may occur on territorially or site-specifically bound molecules, and/or on self-aggregated molecules in a hydrophobic polymer domain. Remarkably, the basicity of RB is increased by the influence of the polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.