Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Inspired by skeletal animation, a novel rigging‐skinning flow control scheme is proposed to animate fluids intuitively and efficiently. The new animation pipeline creates fluid animation via two steps: fluid rigging and fluid skinning. The fluid rig is defined by a point cloud with rigid‐body movement and incompressible deformation, whose time series can be intuitively specified by a rigid body motion and a constrained free‐form deformation, respectively. The fluid skin generates plausible fluid flows by virtually fluidizing the point‐cloud fluid rig with adjustable zero‐ and first‐order flow features and at fixed computational cost. Fluid rigging allows the animator to conveniently specify the desired low‐frequency flow motion through intuitive manipulations of a point cloud, while fluid skinning truthfully and efficiently converts the motion specified on the fluid rig into plausible flows of the animation fluid, with adjustable fine‐scale effects. Besides being intuitive, the rigging‐skinning scheme for fluid animation is robust and highly efficient, avoiding completely iterative trials or time‐consuming nonlinear optimization. It is also versatile, supporting both particle‐ and grid‐ based fluid solvers. A series of examples including liquid, gas and mixed scenes are presented to demonstrate the performance of the new animation pipeline.
Inspired by skeletal animation, a novel rigging‐skinning flow control scheme is proposed to animate fluids intuitively and efficiently. The new animation pipeline creates fluid animation via two steps: fluid rigging and fluid skinning. The fluid rig is defined by a point cloud with rigid‐body movement and incompressible deformation, whose time series can be intuitively specified by a rigid body motion and a constrained free‐form deformation, respectively. The fluid skin generates plausible fluid flows by virtually fluidizing the point‐cloud fluid rig with adjustable zero‐ and first‐order flow features and at fixed computational cost. Fluid rigging allows the animator to conveniently specify the desired low‐frequency flow motion through intuitive manipulations of a point cloud, while fluid skinning truthfully and efficiently converts the motion specified on the fluid rig into plausible flows of the animation fluid, with adjustable fine‐scale effects. Besides being intuitive, the rigging‐skinning scheme for fluid animation is robust and highly efficient, avoiding completely iterative trials or time‐consuming nonlinear optimization. It is also versatile, supporting both particle‐ and grid‐ based fluid solvers. A series of examples including liquid, gas and mixed scenes are presented to demonstrate the performance of the new animation pipeline.
It is notoriously difficult for artists to control liquids while generating plausible animations. We introduce a new liquid control tool that allows users to load, transform, and apply precomputed liquid simulation templates in a scene in order to control a particle‐based simulation. Each template instance generates control forces that drive the global simulated liquid to locally reproduce the templated liquid behavior. Our system is augmented with a variable proportion of temporary particles to help efficiently reproduce the templated liquid density, with fewer requirements on the surrounding environment. The resulting control strategy adds only a small computational overhead, leading to quick visual feedback for resolutions allowing interactive simulation. We demonstrate the robustness and ease of use of our method on various examples in 2D and 3D.
The simulation of large open water surface is challenging using a uniform volumetric discretization of the Navier-Stokes equations. Simulating water splashes near moving objects, which height field methods for water waves cannot capture, necessitates high resolutions. Such simulations can be carried out using the Fluid-Implicit-Particle (FLIP) method. However, the FLIP method is not efficient for the long-lasting water waves that propagate to long distances, which require sufficient depth for a correct dispersion relationship. This paper presents a new method to tackle this dilemma through an efficient hybridization of volumetric and surface-based advection-projection discretizations. We design a hybrid time-stepping algorithm that combines a FLIP domain and an adaptively remeshed Boundary Element Method (BEM) domain for the incompressible Euler equations. The resulting framework captures the detailed water splashes near moving objects with the FLIP method, and produces convincing water waves with correct dispersion relationships at modest additional costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.