2020
DOI: 10.21474/ijar01/11228
|View full text |Cite
|
Sign up to set email alerts
|

Lamella Silicon Optimum Width Determination Under Temperature

Abstract: Geometric parameters are an important data for the choice of solar cell architecture, for better conversion performance. As poor optoelectronic material is used, i.e. short minority carrier's diffusion length and under concentrated light which increases the temperature, it is then important to optimize the width of the lamella in order to have better photogenerated charge collection. Thus the intent of this work is the determination of the width of the lamella structure, presented through phenomelogical parame… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 8 publications
(5 citation statements)
references
References 20 publications
0
3
0
2
Order By: Relevance
“…For a large wavelength of incident light, corresponding to the low value of the silicon absorption coefficient α(λ), minority carriers are generated in depth from the base. The optimum thickness [21] (Hopt(T)) obtained in static (low modulation frequency, i.e. ωτ << 1) is therefore large, and decreases whatever the temperature range values.…”
Section: Ac Photocurrent Density and Ac Back Surface Recombinationmentioning
confidence: 99%
See 1 more Smart Citation
“…For a large wavelength of incident light, corresponding to the low value of the silicon absorption coefficient α(λ), minority carriers are generated in depth from the base. The optimum thickness [21] (Hopt(T)) obtained in static (low modulation frequency, i.e. ωτ << 1) is therefore large, and decreases whatever the temperature range values.…”
Section: Ac Photocurrent Density and Ac Back Surface Recombinationmentioning
confidence: 99%
“…The Ac photocurrent density Jph (Sf, Sb, D(ω, T), H α) is obtained and allows to deduce the AC expression Sb(D(ω, T), H α) of minority charge carriers dynamic recombination velocity [11][12][13][14][15] on the base back side (p/p+). The graphic study of this expression as a function of thickness (H), made it possible to deduce a technique for determining the optimum thickness [16][17][18][19][20][21] of the base (Hopt). This work presents the technique of determining the optimum thickness of the base of the solar cell illuminated by its front face (n+), by exploiting the curve of minority carriers dynamic recombination velocity Sb(H, D(ω , T), α), as a function of (H), through the point (Hopt) of zero derivative.…”
Section: Introductionmentioning
confidence: 99%
“…Thus the tables 1, 2, and 3 give the results of the optimum thickness as a function of the temperature of the base of the solar cell at different doping rates. The rise in temperature and doping rate leads to a decrease in optimum base thickness [21,26,[31][32][33][34] . From the temperature (T = 300K), we see growth as a function of the temperature of the optimum thickness for a doping base (Nb = 10 16 cm -3 ).…”
Section: Determination Of the Optimal Thickness By The Technique Of I...mentioning
confidence: 99%
“…-L'émetteur de type n + , d'épaisseur faible (0,5 à 1µm), et fortement dopé en atomes donneurs(10 17 à 10 19 atomes par cm 3 )) -La base de type p estrelativement peu dopée en atomes accepteurs(10 15 à 10 17 atomes par cm 3 ). Son épaisseur est beaucoup plus importante, et a fait l'objet d'études en optimisation [45], [46], [47], [48], [49], [50].…”
Section: Ces Differentesregions Sontunclassified
“…photogénérés   z x p kl , , ,  aux cordonnées (x, z) dans la base (p), et munie des conditions aux limites caractérisées par les vitesses de recombinaison à la jonction(Sf) [37], [38]et (Sb) en face arrière [39], [40], [41] La densité de photocourant (Jph(Sf)) et la phototension (Vph(Sf)) sont respectivement déduites par la loi de Fick et de Boltzmann, afin d'établir la caractéristique courant (Jph(Sf))-tension (Vph(Sf)) de la photopile sous éclairement [38], [42], 43], pour chaque cas d'irradiation. Le modèle électrique équivalent de la photopile sous éclairement, au point de fonctionnement de circuit ouvert défini par (Sf) la vitesse de recombinaison des porteurs de charge à la jonction, permet de remonter à la résistance série de la photopile d'épaisseur de base optimisée [45], [46], [47], [48], [49], [50], pour chaque dose d'irradiation.…”
unclassified