Fifty Acinetobacter isolates were obtained from urinary tract infections and urinary catheter samples. Analytical profile index assays identified 47 isolates as Acinetobacter baumannii and three as Acinetobacter lwoffii. Six A. baumannii isolates (A1-A6) displayed hydrophobicity indices >70%. Twenty isolates exhibited lectin activity. Biofilm formation by these isolates was compared with those with low hydrophobicity index values (A45-A50). Biofilms on different surfaces were confirmed by light microscopy, epifluorescence microscopy and by obtaining scanning electron microscope images. Biofilm production was maximal at 30 °C, pH 7.0 in a medium with 5.0 g L(-1) NaCl, and its efficiency was reduced on urinary catheter surfaces at sub-minimum inhibitory concentration concentrations of colistin. Plasmid-mediated antibiotic resistance was observed in selected isolates of A. baumannii and experiments of conjugation and transformation showed the occurrence of gene transfer. Plasmid curing was used to examine the function of plasmids. Five plasmids of A. baumannii A3 were cured but no differences were observed between wild-type and plasmid-cured strains with respect to the biofilm formation capabilities. The prevalence of A. baumannii strains with biofilm mode of growth could explain their ability to persist in clinical environments and their role in device-related infections.