2016
DOI: 10.1051/0004-6361/201628328
|View full text |Cite
|
Sign up to set email alerts
|

Globules and pillars in Cygnus X

Abstract: The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 µm and 500 µm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

6
90
1
5

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 71 publications
(103 citation statements)
references
References 69 publications
6
90
1
5
Order By: Relevance
“…This heating amplifies overdensities created by the turbulent ISM, which can then collapse and form stars (Gritschneder et al 2009;Dale et al 2012). These processes can create globules of dense gas (e.g., Tremblin et al 2013;Walch et al 2015;Schneider et al 2016), while stellar winds can drive outflows that create horse-shoe or other complex geometries (Park et al 2010). Ionized gas or radio continuum density measurements within H II regions show many complex radial gradients (Franco et al 2000;Pérez et al 2001;Binette et al 2002;Phillips 2007;Herrera-Camus et al 2016) Franco et al 2000;Kurtz 2002;Johnson & Kobulnicky 2003;Phillips 2007), while larger H II regions typically have more shallow or flat density gradients (Phillips 2008).…”
Section: Discussionmentioning
confidence: 99%
“…This heating amplifies overdensities created by the turbulent ISM, which can then collapse and form stars (Gritschneder et al 2009;Dale et al 2012). These processes can create globules of dense gas (e.g., Tremblin et al 2013;Walch et al 2015;Schneider et al 2016), while stellar winds can drive outflows that create horse-shoe or other complex geometries (Park et al 2010). Ionized gas or radio continuum density measurements within H II regions show many complex radial gradients (Franco et al 2000;Pérez et al 2001;Binette et al 2002;Phillips 2007;Herrera-Camus et al 2016) Franco et al 2000;Kurtz 2002;Johnson & Kobulnicky 2003;Phillips 2007), while larger H II regions typically have more shallow or flat density gradients (Phillips 2008).…”
Section: Discussionmentioning
confidence: 99%
“…The OB associations range in age and size from the young proto-globular cluster Cyg OB2 (Knödlseder 2000;Wright et al 2014), harboring nearly one hundred O-stars, to the slightly older and smaller Cyg OB1, OB3, and OB9 (Uyanıker et al 2001). It has been mapped extensively in a variety of molecular gas tracers (Schneider et al 2006(Schneider et al , 2010bCsengeri et al 2011a,b;Duarte-Cabral et al 2013Dobashi et al 2014;Schneider et al 2016;Pillai et al 2012), dust continuum (Motte et al 2007;Bontemps et al 2010;Hennemann et al 2012), and dust polarization (e.g., Ching et al 2017).…”
Section: Cygnus Xmentioning
confidence: 99%
“…Out of the chaos involved in the formation of high-mass stars come the beautiful pillar structures seen at the rims of the ionised bubbles produced when the stars feed radiation back into their environment (e.g., Hester et al 1996;White et al 1999;Westmoquette et al 2013;Hartigan et al 2015;Schneider et al 2016). The structure and dynamics of these pillars can tell us about the past, present and future star-formation in the region, and are naturally produced in simulations of ionisation feedback (e.g., Gritschneder et al 2010;Mackey & Lim 2010;Tremblin et al 2012).…”
Section: Introductionmentioning
confidence: 99%