Abstract-Biconditional Binary Decision Diagrams (BBDDs) are a novel class of binary decision diagrams where the branching condition, and its associated logic expansion, is biconditional on two variables. Reduced and ordered BBDDs are remarkably compact and unique for a given Boolean function. In order to exploit BBDDs in Electronic Design Automation (EDA) applications, efficient manipulation algorithms must be developed and integrated in a software package. In this paper, we present the theory for efficient BBDD manipulation and its practical software implementation. The key features of the proposed approach are (i) strong canonical form pre-conditioning of stored BBDD nodes, (ii) recursive formulation of Boolean operations in terms of biconditional expansions, (iii) performance-oriented memory management and (iv) dedicated BBDD re-ordering techniques. Experimental results show that the developed BBDD package achieves an average node count reduction of 19.48% and a speed-up factor of 1.63x with respect to a state-of-art decision diagram manipulation package. Employed in the synthesis of datapath circuits, the BBDD manipulation package is capable to advantageously restructure arithmetic operations producing 11.02% smaller and 32.29% faster circuits as compared to a commercial synthesis flow.