In seismic risk mitigation policies, fragility functions of existing buildings play a fundamental role. In this paper, a procedure to develop analytical fragility curves for Moment Resisting Frame Reinforced Concrete buildings is presented. The design of the selected building typologies was performed according to the codes at the time of construction using force-based methods and the state\ud
of the practice at the time of construction. A total of 216 building classes were defined, considering different ages, number of storeys, infill panels, plan dimensions, beam stiffness, and concrete strength. The investigated buildings can be considered low-engineered buildings, using no seismic codes or old seismic codes. The seismic capacity of the selected models representing the existing RC buildings has been evaluated through non-linear dynamic simulations. Seismic response has been analyzed, considering various peak and integral intensity measures and various response parameters, such as ductility demands and Interstorey Drift Ratio (IDR). A new relationship among structural performance, damage levels and interstorey drift ratios for each studied type is introduced, which is calibrated using the damage levels described in EMS98. It is important to highlight that in this study, different thresholds of IDR have been associated with different typologies, considering their different ductility member levels after their different structural responses. Fragility Curves (FCs) for the studied structural types are set up, developed and discussed