2020
DOI: 10.1111/ijac.13549
|View full text |Cite
|
Sign up to set email alerts
|

Evaluation of mechanical and biocompatibility properties of hydroxyapatite/manganese dioxide nanocomposite scaffolds for bone tissue engineering application

Abstract: The aim of this research was to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by MnO2 for bone tissue engineering applications. HA and MnO2 were developed using sol‐gel and precipitation methods, respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS), and transmission electr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 44 publications
0
2
0
1
Order By: Relevance
“…In this regard, greater cell survival depends on the optimal incorporation of Pd NPs into the nanocomposite scaffolds. Pd has high potential features in biomedicine, where it is frequently utilized in surgical equipment and dental products (Azizi et al, 2021).…”
Section: Biocompatibility Of the Various Composite Scaffolds With Hdpscsmentioning
confidence: 99%
“…In this regard, greater cell survival depends on the optimal incorporation of Pd NPs into the nanocomposite scaffolds. Pd has high potential features in biomedicine, where it is frequently utilized in surgical equipment and dental products (Azizi et al, 2021).…”
Section: Biocompatibility Of the Various Composite Scaffolds With Hdpscsmentioning
confidence: 99%
“…Hydroxyapatite bioceramics are rich in minerals, one of the most important components is hydroxyapatite crystal [Ca 10 (PO4) 6 (OH) 2 ] [1]. Amorphous calcium hydrogen phosphate (CaHPO 4 ), Ca 2+ , Mg 2+ , Na + , Cl − , and HCO − were also adsorbed on it.…”
Section: Introductionmentioning
confidence: 99%
“…Hence, BGM scaffolds show great potential in bone regeneration. [12][13] 。 与生物惰性材料不同, BG 植入物能与生物组织发生反应,在材料表面形成生 物活性羟基磷灰石层, 使骨骼组织与植入物间形成牢固 的结合界面 [14][15] 。3D 打印技术具有精确控制结构的优 势, 近年来在骨组织工程支架制备领域得到广泛应用 [16][17] 。 尤其是直接墨水书写打印, 作为其中成熟的一种 3D 打印技术,具有加工灵活、效率高、成本低、环境友好 等优点 [18][19] 。Wu 等 [20] 将介孔生物活性玻璃(MBG)和粘 结剂聚乙烯醇(PVA)通过挤出式 3D 打印构建骨组织工 程支架,具有高度可控的孔结构。Li 等 [21] [22][23] 、共沉积法 [24] 、自生成法 [25][26] 、氧化还原法 [27][28][29] 等。其中,氧化还原法操作简单,所使用的还原剂种 类繁多且经济高效(如 PAH、MES、油酸等),且沉积可 控。Chen 等 [30] 采用氧化还原法在 α-NaYbF4: [35] 。这里 BGM 支架可能因 MnO2 细小颗粒能够沉 积在支架表面的细小孔隙中而改善支架的抗压强度。 Azizi 等 [36] 研究发现沉积 MnO2 的羟基磷灰石复合支架 也同样获得了比纯羟基磷灰石支架更高的抗压强度。 图 1 (A) BG 和 BGM 支架的光学照片及(B)XRD 图谱 [21] [37] 研究发现 PLGA/CaO2/MnO2 复合纳米颗粒能够使 溶液中的饱和氧浓度达到 10~12 mg/L,并且有效缓解 低氧张力下细胞生长的缺氧状态,促进其成骨分化。一 般情况下人体内的 H2O2 浓度在 1~8 μmol/L,而巨噬细 胞活化后可产生局部高浓度的 H2O2(0.01~1 mmol/L) [38][39] 。此外,在炎症性疾病中的 H2O2 浓度可能达到 20 mmol/L,这取决于炎症环境中的中性粒细胞 [40] 。许多 H2O2 响应材料在 H2O2 浓度为 0.02~5 mmol/L 的模拟炎 症环境中进行相关测试 [41][42][43] [44][45] 。另一方面,BGM 支架表 面释放适量的 Mn 离子也能促进成骨细胞的黏附与增 殖 [46]…”
unclassified