2023
DOI: 10.3390/nano13040739
|View full text |Cite
|
Sign up to set email alerts
|

Engineering Multicolor Radiative Centers in hBN Flakes by Varying the Electron Beam Irradiation Parameters

Abstract: Recently, hBN has become an interesting platform for quantum optics due to the peculiar defect-related luminescence properties. In this work, multicolor radiative emissions are engineered and tailored by position-controlled low-energy electron irradiation. Varying the irradiation parameters, such as the electron beam energy and/or area dose, we are able to induce light emissions at different wavelengths in the green–red range. In particular, the 10 keV and 20 keV irradiation levels induce the appearance of bro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 77 publications
0
1
0
1
Order By: Relevance
“…Nonetheless, the clear correlation of optical changes with the e-beam thinned regions presents opportunities for future studies to explore the exact relationship between the atomic structure of electron beam-induced defects in hBN and the resulting photoluminescence. Other irradiation and modification methods, such as scanning electron microscopy (SEM), , FIB, , and strain engineering, have been successfully used to create localized quantum emitters in hBN. In contrast with SEM, which uses low acceleration voltages of a few kV with a resolution limited to ∼10 nm, AC-STEM enables atomic-scale resolution imaging of the material with higher-energy, more precisely controlled irradiation.…”
Section: Resultsmentioning
confidence: 99%
“…Nonetheless, the clear correlation of optical changes with the e-beam thinned regions presents opportunities for future studies to explore the exact relationship between the atomic structure of electron beam-induced defects in hBN and the resulting photoluminescence. Other irradiation and modification methods, such as scanning electron microscopy (SEM), , FIB, , and strain engineering, have been successfully used to create localized quantum emitters in hBN. In contrast with SEM, which uses low acceleration voltages of a few kV with a resolution limited to ∼10 nm, AC-STEM enables atomic-scale resolution imaging of the material with higher-energy, more precisely controlled irradiation.…”
Section: Resultsmentioning
confidence: 99%
“…Разработка вышеозначенных однофотонных источников требует управления концентрацией соответствующих точечных дефектов, причем локальное воздействие на люминесцентные свойства материала представляет наибольший интерес с точки зрения использования полученных структур в приложениях. В связи с этим уже было предпринято несколько попыток формирования в гексагональном нитриде бора центров излучательной и безызлучательной рекомбинации с использованием непосредственного воздействия ионами [7][8][9][10][11], электронами [3,12,13], нейтронами [14], лазерного облучения [12], а также стимулированного электронным пучком локального осаждения углерода [15]. Вместе с тем на сегодняшний день процессы и механизмы дефектообразования при указанных воздействиях на h-BN мало изучены, а имеющиеся сведения подчас противоречивы.…”
Section: Introductionunclassified