2019
DOI: 10.1002/aisy.201900039
|View full text |Cite
|
Sign up to set email alerts
|

Electron Emission Devices for Energy‐Efficient Systems

Abstract: Artificial intelligence platforms, high-speed computation, and data handling systems increasingly need energy-efficient systems. Electron emission was fundamental to the development of transistors and electronics over seven decades ago. This technology has a renewed emergence and includes implications in diverse fields ranging from electronics, telecommunication, defense, space exploration, medical science, and material science to televisions and displays. For such a vital field, a critical review of theories,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
11
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 19 publications
(13 citation statements)
references
References 191 publications
1
11
0
1
Order By: Relevance
“…Nirantar et al [41] have recently reviewed the progress in the electron emitter technology, particularly the field emitters, focusing on high speed micro and nanoelectronics, with special mentions of electron emitters for vacuum microwave devices application. Considering the fact that the vacuum microwave device is a very critical and challenging technology, there is a need to extensively review the field emitters that can cater to the specific requirements of the high power and high frequency miniaturized VEDs.…”
Section: Field Emission Cathodesmentioning
confidence: 99%
“…Nirantar et al [41] have recently reviewed the progress in the electron emitter technology, particularly the field emitters, focusing on high speed micro and nanoelectronics, with special mentions of electron emitters for vacuum microwave devices application. Considering the fact that the vacuum microwave device is a very critical and challenging technology, there is a need to extensively review the field emitters that can cater to the specific requirements of the high power and high frequency miniaturized VEDs.…”
Section: Field Emission Cathodesmentioning
confidence: 99%
“…FE is the extraction of electrons from a semiconducting or metallic material under the application of an electric field. As a macroscopic manifestation of a quantum effect, FE offers significant scientific interests in material science and is exploited in many applications such as electron microscopy, electron spectroscopy, e-beam lithography as well as in vacuum electronics for nanoscale FE transistors, displays and microwave generation or for x-ray tubes [13][14][15][16][17][18][19]. The externally applied electric field reduces the barrier for electron escape from the material to vacuum.…”
Section: Introductionmentioning
confidence: 99%
“…As a macroscopic manifestation of a quantum effect, FE offers significant scientific interests in material science and is exploited in many applications such as electron microscopy, electron spectroscopy, e-beam lithography as well as in vacuum electronics for nanoscale field emission transistors, displays and microwave generation or for x-ray tubes. [13][14][15][16][17][18][19] The externally applied electric field reduces the barrier for electron escape from the material to vacuum. FE is favored from electrically and thermally highly conducting materials with low work function and nanometer rough surface that give rise to local field enhancement.…”
mentioning
confidence: 99%
“…Эти негативные эффекты становятся особенно критичными при достижении уровня проектных норм 10 nm и ниже, что препятствует дальнейшему масштабированию полупроводниковой электроники [1]. Тем не менее сильные стороны приборов вакуумной наноэлектроники (их высокое быстродействие, устойчивость к воздействию радиации и высокой температуры), принцип работы которых основан на эффекте полевой эмиссии электронов в вакуум, могут быть объединены с преимуществами устройств кремниевой КМОП (комплементарная структура металл−оксид−полупро-водник) технологии, что было показано в работах [2][3][4]. Более того, в возможность подобной интеграции была продемонстрирована ранее в [5] на примере создания комбинированных устройств нового класса, сочетающих в себе стандартный МДП ( " металл−диэлектрик−полупроводник") транзистор и вакуумный эмиссионный транзистор с длиной канала проводимости 100 nm и рабочим напряжением 10 V. Дальнейшее снижение рабочего напряжения и, как следствие, потребляемой мощности, а также повышение срока эксплуатации вакуумных наноразмерных приборов может быть достигнуто путем уменьшения длины канала проводимости [6][7][8][9].…”
Section: Introductionunclassified