2015
DOI: 10.1112/plms/pdv016
|View full text |Cite
|
Sign up to set email alerts
|

Diophantine approximation of Mahler numbers

Abstract: Abstract. Suppose that F (x) ∈ Z [[x]] is a Mahler function and that 1/b is in the radius of convergence of F (x) for an integer b ≥ 2. In this paper, we consider the approximation of F (1/b) by algebraic numbers. In particular, we prove that F (1/b) cannot be a Liouville number. If, in addition, F (x) is regular, we show that F (1/b) is either rational or transcendental, and in the latter case that F (1/b) is an S-number or a T -number in Mahler's classification of real numbers.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
13
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
4
2

Relationship

2
4

Authors

Journals

citations
Cited by 10 publications
(18 citation statements)
references
References 28 publications
2
13
0
2
Order By: Relevance
“…In this area, especially at the interface with number theory, gap results are common and expected. For example, if f (n) denotes the n th letter of a one-sided fixed point of a constant-length substitution, then, for any positive integer b 2, the number n f (n)b −n is either rational or transcendental [1,3,14]. Also, this number cannot be a Liouville number, that is, it has finite irrationality exponent [2,14].…”
Section: Introductionmentioning
confidence: 99%
“…In this area, especially at the interface with number theory, gap results are common and expected. For example, if f (n) denotes the n th letter of a one-sided fixed point of a constant-length substitution, then, for any positive integer b 2, the number n f (n)b −n is either rational or transcendental [1,3,14]. Also, this number cannot be a Liouville number, that is, it has finite irrationality exponent [2,14].…”
Section: Introductionmentioning
confidence: 99%
“…In 2006, they proved [1] that every automatic number (which, according to [8, theorem 1], is a subset of Mahler numbers) has finite irrationality exponent, or, equivalently, every automatic number is not a Liouville number. Later, this result was extended to all Mahler numbers [9]. We also mention here the result by Adamczewski and Rivoal [2], where they showed that some classes of Mahler numbers are ψ-badly approximable, for various functions ψ depending on a class under consideration.…”
Section: Introductionmentioning
confidence: 62%
“…, c n ). Naturally, the definition of g u (z) via the infinite product (see (9) and (10)) imposes the upper bound on |c n |, n ∈ N.…”
Section: Coefficients Of the Series Convergents And Hankel Determinantsmentioning
confidence: 99%
“…La conjecture de Cobham a finalement été prouvée dans par une approche totalement différente qui repose sur l'utilisation d'un outil diophantien puissant : une version p‐adique du théorème du sous‐espace (voir ). Plus généralement, dans la direction du théorème, l'alternative f(α) est soit dans Q(α), soit transcendant, a été démontrée : dans le cas où f(z) est une série automatique et α est l'inverse d'un nombre de Pisot ou de Salem par le premier auteur et Bugeaud . dans le cas où f(z) est une série régulière et α est l'inverse d'un entier par Bell, Bugeaud et Coons . …”
Section: La Conjecture De Cobham Et Les Nombres Automatiquesunclassified
“…Le lemme suivant est une adaptation directe d'une construction utilisée par Bell, Bugeaud et Coons dans . Elle permet, étant donné un nombre algébrique α non nul, de plonger un système mahlérien dont les solutions sont définies au point α dans un méta‐système pour lequel les points αql, l0, ne sont jamais des pôles des coefficients de la matrice associée.…”
Section: Première Démonstration Du Point (I) Du Théorèmeunclassified