Background: Mycoplasma anserisalpingitidis is a waterfowl pathogen that mainly infects geese, can cause significant economic losses and is present worldwide. With the advance of whole genome sequencing technologies, new methods are available for the researchers; one emerging methodology is the core genome Multi-Locus Sequence Typing (cgMLST). The core genome contains a high percentage of the coding DNA sequence (CDS) set of the studied strains. The cgMLST schemas are powerful genotyping tools allowing for the investigation of potential epidemics, and precise and reliable classification of the strains. Although whole genome sequences of M. anserisalpingitidis strains are available, to date, no cgMLST schema has been published for this species. Results: In this study, Illumina short reads of 81 M. anserisalpingitidis strains were used, including samples from Hungary, Poland, Sweden, and China. Draft genomes were assembled with the SPAdes software and analysed with the online available chewBBACA program. User made modifications in the program enabled analysis of mycoplasmas and provided similar results as the conventional SeqSphere+ software. The threshold of the presence of CDS in the strains was set to 93% due to the quality of the draft genomes, resulting in the most accurate and robust schema. Three hundred thirty-one CDSs constituted our cgMLST schema (representing 42,77% of the whole CDS set of M. anserisalpingitidis ATCC BAA-2147), and a Neighbor joining tree was created using the allelic profiles. The correlation was observed between the strains' cgMLST profile and geographical origin; however, strains from the same integration but different locations also showed close relationship. Strains isolated from different tissue samples of the same animal revealed highly similar cgMLST profiles. Conclusions: The Neighbor joining tree from the cgMLST schema closely resembled the real-life spatial and temporal relationships of the strains. The incongruences between background data and the cgMLST profile in the strains from the same integration can be because of the higher probability of contacts between the flocks. This schema can help with the epidemiological investigation and can be used as a basis for further studies.