Three plots representing two stages of old‐field succession and the climax were selected in each of three vegetation types in Oklahoma: oak‐pine forest, post oak‐blackjack oak forest, and tall grass prairie. Soil samples from the 0–15 and 45–60 cm levels were analyzed every other month for 1 yr for exchangeable ammonium nitrogen and for nitrate. On alternate months numbers of Nitrosomonas and Nitrobacter were determined in the 0–15 cm level. The amount of ammonium nitrogen was lowest in the first successional stage, intermediate in the second successional stage, and highest in the climax stand. This trend was remarkably consistent throughout all sampling periods, all vegetation types, and both sampling levels in the soil. The amount of nitrate was highest in the first successional stage, intermediate in the second successional stage, and lowest in the climax stand in both sampling levels, all vegetation types, and virtually all sampling periods. The numbers of nitrifiers were high in the first successional stage, generally, and decreased to a very low level in the climax. In fact, there was often no Nitrobacter in the climax stands. These results indicate that the nitrifiers are inhibited in the climax so that ammonium nitrogen is not oxidized to nitrate as readily in the climax as in the successional stages. Evidence from other geographic areas and vegetation types strongly supports this conclusion. This would certainly appear to be a logical trend in the evolution of ecosystems because of the increased conservation of nitrogen and energy. The ammonium ion is positively charged and is adsorbed on the negatively charged colloidal micelles, thus preventing leaching below the depth of rooting. On the other hand, nitrate ions are negatively charged, are repelled by the colloidal micelles in the soil, and thus readily leach below the depth of rooting or are washed away in surface drainage. There is growing evidence also that many plant species can use ammonium nitrogen as effectively or more so than nitrate nitrogen. If ammonium nitrogen is used directly, this eliminates four chemical steps because nitrogen which is oxidized to nitrite and then to nitrate must be reduced back to nitrite and then to ammonium nitrogen before it can react with keto‐acids in the formation of amino acids. The two reduction reactions require considerable expenditure of energy.