Four-junction solar cells require a sub-cell which absorbs across a 1 eV transition for optimal performance. Due to a lack of available lattice-matched materials with the correct bandgap, current high-efficiency 4J devices use latticemismatched sub-cells, complicating the fabrication process. Group IV ternary SiGeSn alloys are a promising material system for achieving a lattice-matched material with a 1 eV direct transition, with functional devices having already been demonstrated. However, further investigation of the fundamental properties of relevant SiGeSn alloys is key to fabricating an efficient 4J device. Results from steady-state photoluminescence and spectroscopic ellipsometry are presented for three different compositions compositions of SiGeSn grown lattice-matched to Ge/GaAs on GaAs substrates. The results show the expected blueshift in the fundamental indirect gap, measured through photoluminescence, and the lowest indirect gap around 1 eV, calculated through analysis of the ellipsometry data. The higher energy transitions also show the expected shifts.