While considering constraints in regard to sustainability, this paper reviews the development of a methodology to assess the introduction of bioenergy supply chains in Mexico based on forest woody biomass. Three research modules include analyses of forest biomass utilization residues that originated from: (1) harvesting activities, (2) non-extracted stands and (3) sawmills. A regional case study focusing on tree species of commercial importance (pine, oak and fir) in the 10 provinces with the highest timber production located in the north and central-south part of the country, is analyzed. After applying the methodology, the theoretical potential of available woody biomass for energetic use amounts to 6,357,482 m 3 . When applying the sustainability constraints, the technically feasible supply of forest woody biomass for energetic use sums up to 5,798,722 m 3 , which relate to a technical energy potential of 45.96 PJ for 2013. Moreover, a biomass energy flow chart showing energy values for each analyzed source and species is presented. Monte Carlo simulations were carried out for each cost involved in utilizing the resulting available woody biomass for energetic use. In the absence of national studies which include forest operations and bioenergy transformation to calculate the sustainable energy potential, the developed methodology adds innovation for assessing woody biomass availability.