We examined the concentrations of metals (Cd, Zn, Cu, Fe and Mn) and potential metal-binding compounds [nicotianamine (NA), thiol compounds and citrate] in xylem and phloem saps from 4-week-old castor bean plants (Ricinus communis) treated with 0 (control), 0.1, 1.0, and 10 μM Cd for 3 weeks. Treatment with 0.1 and 1 μM Cd produced no visible damage, while 10 μM Cd retarded growth. Cadmium concentrations in both saps were higher than those in the culture solution at 0.1 μM, similar at 1.0 μM and lower at 10 μM. Cd at 10 μM reduced Cu and Fe concentrations in both saps. NA concentrations measured by capillary electrophoresis-mass spectrometry (MS) in xylem sap (20 μM) were higher than the Cu concentrations, and those in phloem sap (150 μM) were higher than those of Zn, Fe and Cu combined. Reduced glutathione concentrations differed in xylem and phloem saps (1-2 and 30-150 μM, respectively), but oxidized glutathione concentrations were similar. Phloem sap phytochelatin 2 concentration increased from 0.8 μM in controls to 8 μM in 10 μM Cd. Free citrate was 2-4 μM in xylem sap and 70-100 μM in phloem sap. Total bound forms of Cd in phloem and xylem saps from 1 μM Cd-treated plants were 54 and 8%, respectively. Treatment of phloem sap with proteinaseK reduced high-molecular compounds while increasing fractions of low-molecular Cd-thiol complexes. Zinc-NA, Fe-NA and Cu-NA were identified in the phloem sap fraction of control plants by electrospray ionization time-of-flight MS, and the xylem sap contained Cu-NA.