Porous nitrogen‐doped carbons (NCs) are sustainable alternatives to the toxic mercury‐based acetylene hydrochlorination catalysts applied in the manufacture of polyvinyl chloride. However, the application of NCs as metal‐free catalysts is hampered by their insufficient durability under industrially relevant process conditions. In particular, pore blockage leads to accelerated deactivation of NCs compared to the state‐of‐the‐art precious metal‐based systems. Herein, we develop a salt template‐assisted synthesis strategy coupled with chemical blowing to tune the textural properties of NCs, while preserving the N‐content and speciation. The addition of metal salts (i. e., Mg(OAc)2 or CaCO3) enhances gas evolution, leading to an increased formation of micro‐ and mesopores, while the in‐situ generated CaO/CaCl2 and MgO/MgCl2 develop auxiliary pore networks. Micropores are easily blocked during acetylene hydrochlorination, but meso‐ and macropores are structurally stable, enhancing the lifetime of hierarchical NCs by ca. 50 times compared to their non‐templated analogues, rivaling the stability of benchmark metal‐based catalysts.