1999
DOI: 10.3189/s002214300000174x
|View full text |Cite
|
Sign up to set email alerts
|

Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining

Abstract: A quasi-one-dimensional dense-snow avalanche model has been developed to predict avalanche runout and flow velocity in a general two-dimensional terrain. The model contains three different dense-snow-avalanche flow laws. These are: (1) a Voellmy-fluid flow law with longitudinal active/passive straining, (2) a Voellmy-fluid flow law advanced bv Russian researchers in which the Coulomb-like drv friction is limited bv a yield stress, a~d (3) a modified Criminale-Ericksen-Filby fluid m~del proposed by No;wegian re… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

8
122
0
6

Year Published

2002
2002
2021
2021

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 95 publications
(140 citation statements)
references
References 21 publications
(44 reference statements)
8
122
0
6
Order By: Relevance
“…As such, it is best applied to paths with topographies similar to the majority in the original data set. A hydraulic-continuum avalanche dynamics model (Natale et al, 1994;Barbolini et al, 2000), using a classical two-parameter Voellmy-like resistance law (Bartelt et al, 1999) is tuned to the runout distances provided by the statistical model, and is used to derive impact pressure estimates. Impact pressure is calculated as the product of snow density and velocity squared, according to the proposal of Salm et al (1990).…”
Section: Methodsmentioning
confidence: 99%
“…As such, it is best applied to paths with topographies similar to the majority in the original data set. A hydraulic-continuum avalanche dynamics model (Natale et al, 1994;Barbolini et al, 2000), using a classical two-parameter Voellmy-like resistance law (Bartelt et al, 1999) is tuned to the runout distances provided by the statistical model, and is used to derive impact pressure estimates. Impact pressure is calculated as the product of snow density and velocity squared, according to the proposal of Salm et al (1990).…”
Section: Methodsmentioning
confidence: 99%
“…They were gradually adapted to strongly timedependent flows such as waves induced by a dam break (Ritter 1892). A growing number of models based on the shallow-water equations are currently being used to describe natural flows such as flash floods (Hogg and Pritchard 2004), floods with sediment transport (Pritchard 2005), snow avalanches (Bartelt et al 1999), debris flows (Iverson 1997;Huang and García 1997), lava flows (Griffiths 2000), subaqueous avalanches (Parker et al 1986), and so on. In the derivation of these models, a number of assumptions are used, the most important of which are: the long-wave approximation (no significant curvature of the free surface), hydrostatic pressure, blunt velocity profile, and no change in the bulk composition or rheology.…”
Section: Introductionmentioning
confidence: 99%
“…Originellement, le calcul s'effectuait avec un modèle de propagation de type bloc glissant incluant une loi de frottement de Voellmy. Le développement de modèles de propagation de type fluides a toutefois conduit à la mise à jour de la méthode suisse, avec le remplacement de la description « centre de masse » par un modèle basé sur les équations de Saint-Venant (Bartelt et al, 1999). La directive suisse constitue une approche claire et standardisée permettant d'appréhender ce que peutêtre une avalanche rare (propagation d'un cumul de neige trentennal) ou exceptionnelle (propagation d'un cumul de neige tricentennal).…”
Section: La Méthode Suisse Et Ses Dérivésunclassified