In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were naphthalene, methyl-naphthalene, acenaphthene, acenaphthylene, and carbazole. The gasoline hydrocarbons included benzene, toluene, ethyl benzene, and p-xylene (BTEX). Two porous pot reactors were operated for a period of 10 months under the same influent contaminant concentrations. The contaminated groundwater was introduced into the reactors at a flow rate of 4 and 9 l/day, resulting in a hydraulic retention time (HRT) of 32 and 15 h, respectively. In both reactors, high removal efficiencies were achieved for the PAHs (>99%), BTEX and MtBE (>99.7%). All the PAHs of interest and the four BTEX compounds were detected at concentrations less than 1 lg/l throughout the study duration. Effluent MtBE from both reactors was observed at higher levels; nevertheless, its concentration was lower than the 5 lg/l Drinking Water Advisory for MtBE implemented in California.