Nitrogen (N) deposition to the ocean is thought to be increasing worldwide, but the amount of coastal and open ocean measurements is very limited. In this paper, we assess N deposition in the coastal zone of Cayo Coco, in central Cuba, during a multi-annual period (2005)(2006)(2007). Wet and dry N depositions were estimated based on the NH 4 + and NO x -concentrations in the rain.Cold fronts and troughs, coming from the west, contributed most to rain (41%) and to N deposition, followed by tropical waves and storms coming from the east, which caused 31% of the rain. Average concentrations of NH 4 + and NO x -in the rain were 8.8 and 8.3 μM. NO x -presented a clearly decreasing trend (0.26 μM per month), decreasing by half during [2005][2006][2007]. Total N deposition averaged 3.23 kg N ha −1 year −1 , similar to that found in Virgin Islands and Puerto Rico, but lower than previously measured in Cuba and in nearby areas of the USA and than model predictions for the oceanic region around Cuba. These low values and the decreasing trend found are attributed to drastic reduction of fossil fuel and fertilizer use in Cuba since 1990. Because land input has decreased even more drastically, deposition seems to be nowadays the most important N source to the coastal zone of Cayo Coco. The δ 15 N range of seagrass (Thalassia testudinum) and macroalgae (Penicillus dumetosus) in the area (−1.83‰ to 3.02‰ and +1.02‰ to +4.17‰, respectively) sustain that atmospheric sources (deposition and N 2 fixation) comprise 70-90% of the N budget.