In a plating process, the steel plate is conveyed 20-50 m in the vertical direction for drying, during which it is negligibly supported by rollers and other mechanisms. This produces plating without uniformity owing to the generation of vibration and other factors, which prevent the increase in productivity. We have developed a noncontact guide system for a high-speed traveling elastic steel plate in which electromagnetic forces are applied by actuators at the edges of the plate to control the plate's position. In this study, we investigated the vibration phenomenon when changing the steady current value of the electromagnet used for controlling the position. In addition, we conducted mode analysis of the steel plate to enable stable control even at low steady current values and verified whether stable guide can be provided by using it together with a permanent magnet. As a result, by arranging the permanent magnets, stable guidance was possible even at a low steady current value. In addition, it became clear that vibration damping performance is also improved.