Many climatic variables are projected to occur with more intense and frequent extreme events, possibly unpredictable patterns and negative feedback loops with other environmental processes. Agriculture has faced uncertainty regarding ground temperature and rainfall distribution during the last few years, making water availability one of the major concerns for farm management. In this scenario, rainwater harvesting could represent a powerful tool to mitigate this problem, and consequently, the research community has been fostering new technical solutions. On the other hand, a few studies on agronomic assessment of rainwater harvesting systems are present in scientific literature. The present study reports preliminary data of a long-term study on a Flexible Water Storage System (FWSS) evaluating the possibility of enhancing agriculture systems resilience, shifting from rainfed production to irrigated agriculture relying on excessive rainfall, collectible from extreme events. The idea of intercepting excess rainfall, which is generally lost, thanks to an innovative water harvesting system, and using it to mitigate drought stress for crops is in line with sustainable approaches aiming to improve the resilience of agricultural systems. The results highlighted that the system studied could potentially collect an annual average of 831.7 m3 of water, mitigating the excess of water in the ditch that can potentially cause flooding and storing fresh water to provide irrigation during dry periods.