2019
DOI: 10.1002/qre.2466
|View full text |Cite
|
Sign up to set email alerts
|

A method for construction of mixed‐level fractional designs

Abstract: This research presents a new method to generate near-orthogonal balanced mixed-level fractional designs. The proposed method showed that it is possible to create near-orthogonal balanced fractions of economic size. The method is based in the analysis of the behavior of the genetic algorithm used to generate the efficient arrays (EAs) developed by Guo; a pattern was detected, and this led to the generation of an algorithm capable of constructing fractions in a simple way. These fractions were called near-orthog… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 9 publications
0
3
0
2
Order By: Relevance
“…Secondly, in a balanced factorial experiment, the effect of each factor can be evaluated independently from other factors [5]. Pantoja et al (2009), point out that balance is an important property because it prevents the main effects and interactions from aliasing with the interception column β 0 [6]. Balance also plays another important role; it leads to a considerable simplification of the calculations [7].…”
Section: Run Factorsmentioning
confidence: 99%
See 1 more Smart Citation
“…Secondly, in a balanced factorial experiment, the effect of each factor can be evaluated independently from other factors [5]. Pantoja et al (2009), point out that balance is an important property because it prevents the main effects and interactions from aliasing with the interception column β 0 [6]. Balance also plays another important role; it leads to a considerable simplification of the calculations [7].…”
Section: Run Factorsmentioning
confidence: 99%
“…Orthogonality can be estimated separately and without confusion [27]. In other words, orthogonality ensures that effects can be estimated independently so each column provides different information to the design [6].…”
Section: Run Factorsmentioning
confidence: 99%
“…This difference may not seem significant, but on an industrial level, it could be a competitive advantage. To construct mixed-level fractions, we recommended the approach proposed by [34,35] to produce a near orthogonal balanced design. To achieve more orthogonality, we recommended the use of the sequential experimentation algorithm, presented in Section 5, or D-optimal augmentation.…”
Section: Practical Applicationsmentioning
confidence: 99%
“…Se han propuesto diferentes métodos para construir diseños de niveles mixtos, algunos métodos utilizan algoritmos y técnicas complejas de programación. Para una discusión detallada de métodos de construcción, véase Wang & Wu (1991), Wang & Wu (1992), Wang (1996), Nguyen (1996), DeCock & Stufken (2000), Xu (2002), Guo et al (2007) y Pantoja et al (2019). A diferencia de los diseños tradicionales de dos niveles, los diseños fraccionados de niveles mixtos no tienen relación definidora y no se construyen mediante generadores.…”
Section: Introductionunclassified
“…La propiedad de balance se refiere a que cada nivel de un factor se ejecute el mismo número de veces en un experimento, de esta forma se obtiene una distribución uniforme de la información para cada nivel de factor. La ortogonalidad implica la independencia lineal por pares de columnas y es útil para evaluar la importancia del factor (Pantoja et al, 2019). Se han propuesto criterios para evaluar dichas propiedades para diseños de niveles mixtos (Xu & Wu, 2001;Xu, 2002;Xu, 2003;Xu & Deng, 2005;Guo et al, 2007;Guo et al, 2009a).…”
Section: Introductionunclassified