1980
DOI: 10.1094/phyto-70-232
|View full text |Cite
|
Sign up to set email alerts
|

A Flexible Model for Studying Plant Disease Progression

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
27
0
8

Year Published

1988
1988
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 70 publications
(35 citation statements)
references
References 0 publications
0
27
0
8
Order By: Relevance
“…The Weibull probability density function and cumulative distribution can be successfully used to describe a wide range of disease progress curves (Pennypacker et al 1980;Mora-Aguilera et al 1996). In this formula b is a scale parameter, which is inversely related to the rate of disease increase.…”
Section: Field Experimentsmentioning
confidence: 99%
“…The Weibull probability density function and cumulative distribution can be successfully used to describe a wide range of disease progress curves (Pennypacker et al 1980;Mora-Aguilera et al 1996). In this formula b is a scale parameter, which is inversely related to the rate of disease increase.…”
Section: Field Experimentsmentioning
confidence: 99%
“…Se describió la ocurrencia de temperaturas máximas y mínimas con base en intervalos de confianza para la media (Sincich et al, 2002) y número de días con temperaturas mínimas inferiores a 4 o C y superiores a 30 o C. Con un software denominado SICA (Medina et al, 2004), se calcularon unidades calor diarias con el método de seno simple con temperatura mínima crítica de 4 o C (Asante et al, 1991). Las unidades calor diarias y la precipitación, se acumularon por año y durante el periodo de evaluación y se ajustaron con el modelo Weibull modificado (Pennypacker et al, 1980), que es flexible a los parámetros Y=1−exp(−UC o -pp)/b) c ; donde Y= proporción acumulada de unidades calor u ocurrencia acumulada de precipitación(mm); UC, pp= unidades calor (o precipitación acumulada); b= estimador de la tasa de crecimiento en su forma inversa (1/b); c= parámetro de la forma de la curva. Para una misma variable, el estimador de la tasa de incremento por año, permite detectar diferencias significativas entre ellos.…”
Section: Methodsunclassified
“…With a software called SICA (Medina et al, 2004), daily heat units were calculated using the simple method with minimum temperature within critical of 4 °C (Asante et al, 1991). Daily heat and precipitation, accumulated units per year and during the evaluation period and adjusted to the modified Weibull model (Pennypacker et al, 1980), which is flexible to the parameters Y=1-exp(-UC o -pp)/b) c ; where Y= cumulative proportion of units heat or accumulated occurrence of precipitation (mm); UC, pp = heat units (or accumulated rainfall); b = estimator growth rate in its inverse (1 / b); c = parameter curve shape. For the same variable, the estimate of the rate of increase per year, to detect significant differences between them.…”
Section: Ocurrencia Temporal De Pulgón Lanígero En áRboles De Manzanomentioning
confidence: 99%
“…Epidemics in each of the three regions were characterized by the model of simplified Weibull distribution with two parameters (b and c) (Pennypacker et al, 1980;Thal et al, 1984): Y = 1-e-(t/b) c , t>0; where Y = incidence ratio, t = time in days after planting, b = parameter estimator of the epidemic rate in its inverse form, and c = parameter of the curve shape. Additionally, the intensity of epidemics was estimated by calculating the absolute area under the disease progress curve (AUDPCa) by the trapezoidal integration method: AUDPCa = Σ1 n-i [(Yi + Yi +1) / 2] (t i +1 -ti), where: Yi = proportion of disease in the i-th evaluation, ti = time at the i-th observation, n = number of evaluations (Campbell and Madden, 1990;Jeger and Viljanen-Rollinson, 2001).…”
Section: Temporal Analysismentioning
confidence: 99%