The article analyzes the main information automated control systems for refueling complexes, based on this analysis, the problems of the airport ground handling functioning are identified, the main of which are the inefficiency of managing stochastic processes that occur in failure situations, as well as the lack of automated control systems for the level of purity of aviation fuel from mechanical impurities and water. The way to upgrade Groundstar Inform GmbH - a single integrated airport management system by increasing the capabilities of the system by adding new components is proposed. A solution to the problem of multi-resource planning of aircraft refueling in high-intensity flight conditions, including failure situations, based on intelligent simulation and resource management is proposed. As well as from the point of view of optimizing the solution of business process objectives the development of planning algorithms using the mathematical apparatus of fuzzy modeling and control, fuzzy sets and fuzzy logic underlying the intelligent modeling of processes is proposed. The concept of an adaptive information management system of technological processes of a refueling complex for monitoring the purity of jet fuel, based on dynamic on-line monitoring of the existence of mechanical impurities and water is introduced. The article examines the elements of creating a "Smart Refueling Complex", in which intelligent business processes are combined into one whole due to the use of "smart" operational processes and technological equipment. The introduction of digital technologies, "industry 4.0" tools and trends in automation, digitalization and digitalization of the modern aviation fuel supply for civil aviation is becoming the basis of the digital economy of civil aviation refueling complexes.
In the process of performing a complex of works on refueling of civil aviation aircraft, one of the key issues is to ensure flight safety by controlling the quality of aviation fuel directly during refueling operations. Currently, to ensure the purity of the refueled jet fuel, water separators with filter elements of a normalized degree of purification are installed on the aircraft refueling facilities, the operation of which in the working area provides normalized indicators of cleaning jet fuel from water and mechanical impurities. As practice shows, in the process of refueling aircraft, for various objective and subjective reasons, sometimes there are stochastic situations in which quality indicators go beyond the limits established by regulatory documentation and are not deterministic, and the subsequent state of such a system is described by values that characterize an extremely low level of jet fuel purification with negative consequences for flight safety. This paper presents a mathematical description of the functioning of water separator filters in the working area, where standardized indicators of the quality of aviation fuel are provided during the refueling of aircraft. The article deals with the issue of blocking the refueling of aircraft in the event of the appearance of non-normalized technical documentation indicators of the quality of aviation fuel, which arise due to a number of different factors that lead to negative cause-and-effect relationships for flight safety. Based on the mathematical description, an approach to creating a system for protecting and blocking the refueling process under the working name "Barrier" is proposed. Of the greatest interest for the study are typical water separator filters installed on refueling vehicles as terminal technical devices for fuel purification during refueling of aircraft.
In the process of air transportation, a large amount of information exchange plays an important role in the timely management of aircraft flights. The work of any airline and airport consists of many processes that involve a big number of participants. One of these issues is timely aircraft refueling. The use of the blockchain technology makes it possible to process an airline request for aircraft refueling in a timely manner, make payment and exchange of accounting documents between the airline and the refueling complex. The paper gives the main definitions for the elements of the smart contracts and their interrelationships based on the blockchain technology when performing accounting operations and payment transactions for aircraft refueling. The article is devoted to a comprehensive study of the smart contract technology application in the aircraft refueling system, in particular, the exchange of accounting and payment documentation between the airline, the refueling complexes of civil aviation airports and banks. The aim of the research work is to study the application of the blockchain technology in the aircraft refueling operations. Based on the analysis it is necessary to develop a scheme for the use of the smart contract technology when aircraft refueling, which allows the parties concerned to reduce the volume of accounting and payment operations and increase the operating efficiency of the objects and subjects of the refueling process. The paper presents the chain of information passing and blockchain transformation varying from the execution of refueling operations to the execution of banking operations, payment for jet fuel and related services for aircraft refueling. Special attention is paid to the role and location of aircraft refueling facilities as a key element of the module for automatic reconciliation of accounting and payment documents in the formation of a smart contract. Based on the analysis of the blockchain technology application, a scheme of interaction among an airline, a refueling complex and a bank is proposed. The application of the proposed scheme allows the airline to pay for refueling at the time of refueling without time-consuming accounting operations and prepayment for jet fuel, thereby reducing the accounting time.
In civil aviation primary focus is on the quality of fuel filled in the aircraft fuel tanks, as one of the components of flight safety ensuring. The introduction of digital technologies and trends in automation, digitalization of modern civil aviation aircraft provision are becoming the basic tool for civil aviation refueling complexes in terms of ensuring flight safety of civil aviation aircraft. This article considers the processes of airfield control that take place in the stationary operating conditions of refueling complexes of civil aviation airports as Markov processes and studies the approaches to their mathematical modeling. The authors claim that in the case of disruption, there is a transition from Markov to Poisson processes, which mathematical description requires different approaches. The practical application of these statements is obvious in the study of the states probabilities value as a function of time t. For practical purposes, the limiting probabilities of states at t→∞ are of interest. This creates conditions for entering new variables, such as performance and others. Thus, Markov processes allow us to apply the mathematical apparatus of operations research, where the system of states is transformed into the queuing system. To maintain Markov processes, the authors suggest giving due consideration to the objects and technical means of airfield control functioning including: retrofitting of filling points and refueling facilities with closed sampling systems, operational measurement of aviation fuel quality indicators and registration of their results, automated monitoring of filter elements condition while refueling and its blocking in the case of stochastic differential pressure beyond the specified indicators. A special novelty is the view on the measuring process of the aircraft refueling operations as an integral part of airfield control, using block chain technologies as an advanced application of Markov chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.