BackgroundOweniids are marine tubeworms burrowing in muddy sediments that in current phylogenies form an early branching lineage within Annelida. Little is known about their general morphology, in particular the nervous system. Here we provide an immunocytochemical investigation of the nervous system of Galathowenia oculata in order to discuss putative ancestral neuronal features in Oweniidae.ResultsAdult Galathowenia oculata have neither a supraesophageal ganglion nor ganglia associated with the ventral nerve cord. Instead, there is a dorsal brain commissure in the head collar that is engulfed by a cellular cortex. Accordingly, we herein term this neural structure “medullary brain commissure”. The anterior margin of the head collar exhibits numerous neurites that emerge from the brain commissure. The dorsolateral folds are innervated by the ventrolateral neurite bundles extending from the circumesophageal connectives. In the anterior uniramous and biramous segments immunoreactive somata are distributed evenly along the ventral nerve cord and arranged metamerically in the posterior-most short segments. One dorsal and two pairs of lateral neurite bundles extend longitudinally along the body. Numerous serially arranged circular neurite bundles were labeled in anteriormost long segments. Metameric arrangement of the circular neurite bundles stained against FMRFamide and acetylated α-tubulin is revealed in posterior short segments. For the first time immunoreactive somata arranged in clusters are reported within the pygidium in oweniids.ConclusionsDue to the lack of head appendages and a sedentary mode of life, G. oculata exhibits a single dorsal commissure (versus a brain with four commissures in most annelids). A “medullary brain commissure” is known so far only in Oweniidae and Echiura. Lack of ganglia and metamery in the ventral nerve cord of the anteriormost segments might be the result of the elongation of these segments. In the short posterior segments the metamery of immunoreactive somata and circular neurite bundles is conserved. We hypothesize that the unpaired ventral nerve cord in adult oweniids might be a result of an initially paired ventral nerve cord that fuses during development, a condition not uncommon within Annelida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.