The characteristic features of Alzheimer’s disease (AD) are the appearance of extracellular amyloid-beta (Aβ) plaques and neurofibrillary tangles in the intracellular environment, neuronal death and the loss of synapses, all of which contribute to cognitive decline in a progressive manner. A number of hypotheses have been advanced to explain AD. Abnormal tau phosphorylation may contribute to the formation of abnormal neurofibrillary structures. Many different structures are susceptible to AD, including the reticular formation, the nuclei in the brain stem (e.g., raphe nucleus), thalamus, hypothalamus, locus ceruleus, amygdala, substantia nigra, striatum, and claustrum. Excitotoxicity results from continuous, low-level activation of N-methyl-D-aspartate (NMDA) receptors. Premature synaptotoxicity, changes in neurotransmitter expression, neurophils loss, accumulation of amyloid β-protein deposits (amyloid/senile plaques), and neuronal loss and brain atrophy are all associated with stages of AD progression. Several recent studies have examined the relationship between Aβ and NMDA receptors. Aβ-induced spine loss is associated with a decrease in glutamate receptors and is dependent upon the calcium-dependent phosphatase calcineurin, which has also been linked to long-term depression.
MTX-induced structural and functional damage to hepatic tissues in rats may involve oxidative stress, and cytoprotective agents (NAC > AMF > ASC) may alleviate MTX hepatotoxicity.
The aim of the study is to evaluate the acute biochemical and histological changes in rat kidneys after treatment with grayanotoxin (GTX) of rhododendron honey (RH). A total of 60 Sprague-Dawley female rats were divided into five groups of 12 rats each, one being a control group (group 1) and group 2 was treated with 0.015 mg/kg/bw of GTX standard preparation via intraperitoneal injection. Groups 3, 4, and 5 were given RH at doses of 0.1, 0.5, and 2.5 g/kg/bw, respectively, via oral gavage. Compared to the control group, significant increases were observed in glucose, blood urea nitrogen (BUN), and creatinine levels of the GTX-injected groups after 1 h. However, in low dose RH group, such an increase was not observed and had a normal appearance histologically. Therefore, low dose (1 g/kg/bw) of RH produces no acute adverse effects on renal functions of rats.
Cyclophosphamide (CYC) and doxorubicin (DOX) are among the most effective and widely used anticancer chemotherapeutic drugs. Potential chemopreventive and chemotherapeutic functions have recently been attributed to flavonoids. We hypothesized that Quercetin (QR) would protect against the toxic effects of chemotherapeutic agents applied prior to pregnancy. Rats were treated with the chemotherapeutic drugs CYC (27 mg/kg) and DOX (1.8 mg/kg) applied in a single intraperitoneal dose once every 3 weeks for 10 weeks. QR was administered at a dose of 10 mg/kg/day by oral gavage. 48 h following the experimental chemotherapy exposure, female rats were transferred to cages containing male rat for mating. Fetal brain tissues were removed from fetuses extracted by cesarean section on the 20th day of gestation for evaluation of antioxidant parameters. A significant increase in superoxide dismutase and malondialdehyde activity was observed in CYC and DOX treatment groups relative to the control group (p \ 0.05). Similarly, carnitine acylcarnitine translocase and Glutathione activity was significantly reduced in the CYC and DOX groups relative to the control group (p \ 0.05). Our results indicate that the use of chemotherapeutic drugs before pregnancy can result in oxidative damage to fetal brain tissue. Therefore, women who have been exposed to chemotherapy and may become pregnant should be treated with antioxidant compounds such as QR to reduce the risk of damage to fetal brain tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.