Recently, numerous promising results have shown that updatable learned indexes can perform better than traditional indexes with much lower memory space consumption. But it is unknown how these learned indexes compare against each other and against the traditional ones under realistic workloads with changing data distributions and concurrency levels. This makes practitioners still wary about how these new indexes would actually behave in practice. To fill this gap, this paper conducts the first comprehensive evaluation on updatable learned indexes. Our evaluation uses ten real datasets and various workloads to challenge learned indexes in three aspects: performance, memory space efficiency and robustness. Based on the results, we give a series of takeaways that can guide the future development and deployment of learned indexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.