Commit messages record code changes (e.g., feature modifications and bug repairs) in natural language, and are useful for program comprehension. Due to the frequent updates of software and time cost, developers are generally unmotivated to write commit messages for code changes. Therefore, automating the message writing process is necessitated. Previous studies on commit message generation have been benefited from generation models or retrieval models, but code structure of changed code, which can be important for capturing code semantics, has not been explicitly involved. Moreover, although generation models have the advantages of synthesizing commit messages for new code changes, they are not easy to bridge the semantic gap between code and natural languages which could be mitigated by retrieval models. In this paper, we propose a novel commit message generation model, named ATOM, which explicitly incorporates abstract syntax tree for representing code changes and integrates both retrieved and generated messages through hybrid ranking. Specifically, the hybrid ranking module can prioritize the most accurate message from both retrieved and generated messages regarding one code change. We evaluate the proposed model ATOM on our dataset crawled from 56 popular Java repositories. Experimental results demonstrate that ATOM increases the state-of-the-art models by 30.72% in terms of BLEU-4 (an accuracy measure that is widely used to evaluate text generation systems). Qualitative analysis also demonstrates the effectiveness of ATOM in generating accurate code commit messages.
Code summaries help developers comprehend programs and reduce their time to infer the program functionalities during software maintenance. Recent efforts resort to deep learning techniques such as sequence-to-sequence models for generating accurate code summaries, among which Transformer-based approaches have achieved promising performance. However, effectively integrating the code structure information into the Transformer is under-explored in this task domain. In this paper, we propose a novel approach named SG-Trans to incorporate code structural properties into Transformer. Specifically, we inject the local symbolic information (e.g., code tokens and statements) and global syntactic structure (e.g., data flow graph) into the self-attention module of Transformer as inductive bias. To further capture the hierarchical characteristics of code, the local information and global structure are designed to distribute in the attention heads of lower layers and high layers of Transformer. Extensive evaluation shows the superior performance of SG-Trans over the state-of-the-art approaches. Compared with the best-performing baseline, SG-Trans still improves 1.4% and 2.0% in terms of METEOR score, a metric widely used for measuring generation quality, respectively on two benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.