Bacterial adhesion onto solid surfaces is of importance in a wide spectrum of problems, including environmental microbiology, biomedical research, and various industrial applications. Despite many research efforts, present thermodynamic models that rely on the evaluation of the adhesion energy are often elusive in predicting the bacterial adhesion behavior. Here, we developed a new spectrophotometric method to determine the surface free energy (SFE) of bacterial cells. The adhesion behaviors of five bacterial species, Pseudomonas putida KT2440, Salmonella Typhimurium ATCC 14028, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 29212, and Escherichia coli DH5α, onto two model substratum surfaces, i.e., clean glass and silanized glass surfaces, were studied. We found that bacterial adhesion was unambiguously mediated by the SFE difference between the bacterial cells and the solid substratum. The lower the SFE difference, the higher degree of bacterial adhesion. We therefore propose the use of the SFE difference as an accurate and simple thermodynamic measure for quantitatively predicting bacterial adhesion. The methodological advance and thermodynamic simplification in the paper have implications in controlling bacterial adhesion and biofilm formation on solid surfaces.
Graphene nanoplatelets (GNPs) can be produced by exfoliating graphite in solvents via high-power tip sonication. In order to understand the influence of tip sonication parameters on graphite exfoliation to form GNPs, three typical flaked graphite samples were exfoliated into GNPs via tip sonication at power of 60, 100, 200, or 300 W for 10, 30, 60, 90, 120, or 180 min. The concentration of GNP dispersions, the size and defect density of the produced GNPs, and the sedimentation behavior of GNP dispersions produced under various tip sonication parameters were determined. The results indicated that the concentration of the GNP dispersions was proportional to the square root of sonication energy input (the product of sonication power and time). The size and ID/IG values (determined by Raman spectrum) of GNPs produced under various tip sonication powers and times ranged from ~ 1 to ~ 3 μm and ~ 0.1 to ~ 0.3, respectively, which indicated that all the produced GNPs were of high quality. The sedimentation behavior of GNP dispersions showed that the dispersions were favorably stable, and the concentration of each GNP dispersion was ~ 70% of its initial concentration after sedimentation for 96 h. Moreover, the TEM images and electron diffraction patterns were used to confirm that the produced GNPs were few-layer. This study has important implications for selecting the suitable tip sonicating parameters in exfoliating graphite into GNPs.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2648-5) contains supplementary material, which is available to authorized users.
The ironmaking process is the most significant source of CO 2 emission in the iron and steel industry, which generates large quantities of greenhouse gases. Recently, oxygen blast and top gas recycling have been applied to the blast furnace to improve the energy efficiency and reduce the pollution from the ironmaking process. However, as a new ironmaking technology, the oxygen blast furnace with top gas recycling (TGR-OBF) is still under development. This paper focuses on the investigation of the energy consumption and carbon emission for the TGR-OBF process by modeling the stack, the bosh, the combustion zone, and the gas recycling system. Effects of the key parameters in the TGR-OBF process on the carbon consumption of reactions and the energy consumption of the system are investigated by orthogonal experiments. Our results indicate that the TGR-OBF process has the advantages of reducing energy consumption and CO 2 emission. The low temperature and high reducing environment in the new furnace is favorable to lower the coke gasification and increase the reaction rate of iron oxide. The recycling of the top gas can significantly reduce CO 2 emission, and the main advantage comes when the stripped CO 2 is stored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.