SummaryBackground-Regeneration, a remarkable example of developmental plasticity displayed by both plants and animals, involves successive developmental events driven in response to environmental cues. Despite decades of study on the ability of the plant tissues to regenerate complete fertile shoot system after inductive cues, the mechanisms by which cells acquire pluripotency and subsequently regenerate complete organs remain unknown.
Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Ben Scheres and colleagues report that in the growing tip of plant roots, a gene regulatory network that includes the plant homologue of Retinoblastoma regulates the divisions of long-term stem cells to replenish tissue and to protect the root stem cell niche.
Lateral roots (LRs), which originate from the growing root, and adventitious roots (ARs), which are formed from non-root organs, are the main contributors to the post-embryonic root system in Arabidopsis. However, our knowledge of how formation of the root system is altered in response to diverse inductive cues is limited. Here, we show that WOX11 contributes to root system plasticity. When seedlings are grown vertically on medium, WOX11 is not expressed in LR founder cells. During AR initiation, WOX11 is expressed in AR founder cells and activates LBD16. LBD16 also functions in LR formation and is activated in that context by ARF7/19 and not by WOX11. This indicates that divergent initial processes that lead to ARs and LRs may converge on a similar mechanism for primordium development. Furthermore, we demonstrated that when plants are grown in soil or upon wounding on medium, the primary root is able to produce both WOX11-mediated and non-WOX11-mediated roots. The discovery of WOX11-mediated root-derived roots reveals a previously uncharacterized pathway that confers plasticity during the generation of root system architecture in response to different inductive cues.
SignificanceRoot architecture is an important trait that is shaped by the formation of primary roots, lateral roots, and adventitious roots. Here, we show that three PLETHORA (PLT) transcription factors are the key molecular triggers for the de novo organ patterning during Arabidopsis lateral root formation. PLT3, PLT5, and PLT7 redundantly regulate the correct initiation of formative cell divisions in incipient lateral root primordia and the proper establishment of gene expression programs that lead to the formation of a new growth axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.