Macrophages are highly plastic cells, and the polarization-activating actions that represent their functional focus are closely related to metabolic reprogramming. The metabolic reprogramming of macrophages manifests itself as a bias toward energy utilization, transforming their inflammatory phenotype by changing how they use energy. Metabolic reprogramming effects crosstalk with the biological processes of inflammatory action and are key to the inflammatory function of macrophages. In ischemic heart disease, phenotypic polarization and metabolic shifts in circulating recruitment and tissue-resident macrophages can influence the balance of inflammatory effects in the heart and determine disease regression and prognosis. In this review, we present the intrinsic link between macrophage polarization and metabolic reprogramming, discussing the factors that regulate macrophages in the inflammatory effects of ischemic heart disease. Our aim is to estabilsh reliable regulatory pathways that will allow us to better target the macrophage metabolic reprogramming process and improve the symptoms of ischemic heart disease.
Background: Accumulating evidence suggests that coronary microvascular dysfunction (CMD) is one of the important causes of coronary artery diseases. Angiogenesis can effectively improve CMD by increasing blood supply capacity, recovering cardiac function and poor hemodynamics. Clinical studies have approved Shexiang Tongxin dropping pill (STDP), which has exerted remarkable roles on ameliorating CMD, but the effects and mechanisms of STDPs on angiogenesis have not been clarified.Purpose: The purpose of this study was to elucidate the effects and potential mechanisms of STDPs on macrophage polarization-induced angiogenesis against CMD.Methods: Echocardiography, optical microangiography (OMAG), and histological examination were applied to evaluate cardioprotection and proangiogenic effects of STDPs on left anterior descending (LAD) ligation-induced CMD rats. In vitro, oxygen–glucose deprivation–reperfusion (OGD/R)-induced HUVEC model and LPS-stimulated bone marrow-derived macrophage (BMDM) model were established to observe the effects of STDPs on angiogenesis and M2 macrophage polarization.Results: STDPs improved cardiac function, increased microvascular density, and the number of M2 macrophages in the heart of CMD rats. In vitro, STDPs accelerated the proliferation, migration, and tube formation in OGD/R-induced HUVECs similar to the effects of VEGF-A. Furthermore, in LPS-stimulated BMDMs model, STDPs modulated M2 macrophage polarization and increased VEGF-A release via the PI3K/AKT/mTORC1 pathway.Conclusion: STDPs promoted macrophage polarization-induced angiogenesis against CMD via the PI3K/Akt/mTORC1 pathway. Our results demonstrated that the phenotype transformation of macrophages and stimulating the secretion of VEGF-A may be applied as novel cardioprotective targets for the treatment of CMD.
Volcano‐tectonic processes have been viewed as primary drivers in the formation of present‐day diversity. Volcanos associated with mountain uplifts drive allopatric speciation through vicariance and may impact the surrounding areas like species pump or species attractor. However, the application of these hypotheses to aquatic fauna has rarely been tested explicitly. We tested these hypotheses in the Changbai Mountains (Mts), which are one of the most typical, active volcanic ranges in Northeast (NE) Asia with a long and turbulent geological history. The Gammarus nekkensis species complex of amphipod crustaceans, widely distributed throughout NE Asia with poor dispersal abilities and a long evolutionary history, is a suitable model for testing hypotheses of species pump or species attractor. Phylogenetic and ancestral range reconstructions demonstrated that the studied amphipod originated from the Changbai Mts ~27 Ma and diverged into eastern (Clade I) and western (Clade II) clades, which corresponds well with the initial volcanic eruption of the Changbai Mts in the Late Oligocene. The subsequent diversifications of subclades CI‐3, CII‐1a and CII‐2a were probably driven by second and third eruptions of the Changbai Mts during the Miocene. In particular, the Changbai lineages had spread to the Russian Far East multiple times since the Early Miocene, and widely colonized the region during the Pleistocene. Our discoveries suggest that the ancient volcanos of the Changbai Mts act as species pumps in NE Asia, resulted in burst of diversification around the Changbai Mts and subsequent dispersals into adjacent regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.