Benign epilepsy with centrotemporal spikes (BECT) is the most common childhood idiopathic focal epilepsy syndrome, which characterized with white‐matter abnormalities in the rolandic cortex. Although diffusion tensor imaging research could characterize white‐matter structural architecture, it cannot detect neural activity or white‐matter functions. Recent studies demonstrated the functional organization of white‐matter by using functional magnetic resonance imaging (fMRI), suggesting that it is feasible to investigate white‐matter dysfunctions in BECT. Resting‐state fMRI data were collected from 24 new‐onset drug‐naive (unmedicated [NMED]), 21 medicated (MED) BECT patients, and 27 healthy controls (HC). Several white‐matter functional networks were obtained using a clustering analysis on voxel‐by‐voxel correlation profiles. Subsequently, conventional functional connectivity (FC) was calculated in four frequency sub‐bands (Slow‐5:0.01–0.027, Slow‐4:0.027–0.073, Slow‐3:0.073–0.198, and Slow‐2:0.198–0.25 Hz). We also employed a functional covariance connectivity (FCC) to estimate the covariant relationship between two white‐matter networks based on their correlations with multiple gray‐matter regions. Compared with HC, the NMED showed increased FC and/or FCC in rolandic network (RN) and precentral/postcentral network, and decreased FC and/or FCC in dorsal frontal network, while these alterations were not observed in the MED group. Moreover, the changes exhibited frequency‐specific properties. Specifically, only two alterations were shared in at least two frequency bands. Most of these alterations were observed in the frequency bands of Slow‐3 and Slow‐4. This study provided further support on the existence of white‐matter functional networks which exhibited frequency‐specific properties, and extended abnormalities of rolandic area from the perspective of white‐matter dysfunction in BECT.
Purpose To investigate the temporal and causal relationships of structural changes in the brain in patients with schizophrenia. Materials and Methods T1-weighted magnetic resonance (MR) images of 97 patients with schizophrenia (29 women; mean ± standard deviation age, 41 years ± 11.5; range, 16-66 years; illness duration, 16.3 years ± 10.9; range, 0-50 years) and 126 age- and sex-matched (38 years ± 14.9; range, 18-68 years; 42 women) healthy control subjects were evaluated. The causal network of structural covariance was used to assess the causal relationships of structural changes in patients with schizophrenia. This was accomplished by applying Granger causality analysis to the morphometric T1-weighted images ranked according to duration of disease. Results With greater disease duration, reduction in gray matter volume began in the thalamus and progressed to the frontal lobe, and then to the temporal and occipital cortices as well and the cerebellum (P < .00001, false discovery rate corrected). The thalamus was shown to be the primary hub of the directional network and exhibited positive causal effects on the frontal, temporal, and occipital regions as well as on the cerebellum (P < .05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe, temporal regions, and the cerebellum and received causal effects from the thalamus (P < .05, false discovery rate corrected). Conclusion Schizophrenia shows progression of gray matter abnormalities over time, with the thalamus as the primary hub and the frontal regions as prominent nodes. RSNA, 2018 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on March 5, 2018.
HighlightsElectroconvulsive therapy (ECT) induced enlargement in hippocampus volume contrast to pharmaceutical therapy in schizophrenia.Both ECT responders and non-responders show hippocampal volume expansion.Increased FC between hippocampus and brain cognitive networks only in ECT responders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.