Over the past few decades, vision based alignment has been accepted as an important technique to achieve higher economic benefits for precision manufacturing and measurement applications. Also referred to as visual servoing, this technique basically applies the vision feedback information and drives the moving parts to the desired target location using some appropriate control laws. Although recently rapid development of advanced image processing algorithms and hardware have made this alignment process an easier task, some fundamental issues including inevitable system constraints and singularities, still remain as a challenging research topic for further investigation. This paper aims to develop a visual servoing method for automatic alignment system using model predictive control (MPC). The reason for using this optimal control for visual servoing design is because of its capability of handling constraints such as motor and image constraints in precision alignment systems. In particular, a microassembly system for peg and hole alignment application is adopted to illustrate the design process. The goal is to perform visual tracking of two image feature points based on a XYθ motor-stage system. From the viewpoint of MPC, this is an optimization problem that minimizes feature errors under given constraints. Therefore, a dynamic model consisting of camera parameters and motion stage dynamics is first derived to build the prediction model and set up the cost function. At each sample step the control command is obtained by solving a quadratic programming optimization problem. Finally, simulation results with comparison to a conventional image based visual servoing method demonstrate the effectiveness and potential use of this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.