A circularly polarized ellipsometer was developed to enable real-time measurements of the optical properties of materials. Using a four photo-detector quadrature configuration, a phase modulated ellipsometer was substantially miniaturized which has the ability to achieve a high precision detection limit. With a proven angular resolution of 0.0001 deg achieved by controlling the relative positions of a triangular prism, a paraboloidal and a spherical mirror pair, this new ellipsometer possesses a higher resolution than traditional complex mechanically controlled configurations. Moreover, the addition of an algorithm, FTA (fault tolerance algorithm) was adopted to compensate for the imperfections of the opto-mechanical system which can decrease system measurement reliability. This newly developed system requires only one millisecond or less to complete the measurement task without having to adopt any other modulation approach. The resolution achieved can be as high as 4x10(-7) RIU (refractive index unit) which is highly competitive when compared with other commercially available instruments. Our experimental results agreed well with the simulation data which confirms that our quadrature-based circularly polarized ellipsometer with FTA is an effective tool for precise detection of the optical properties of thin films. It also has the potential to be used to monitor the refractive index change of molecules in liquids.
Group testing (or pool testing), for example, Dorfman’s method or grid method, has been validated for COVID-19 RT-PCR tests and implemented widely by most laboratories in many countries. These methods take advantages since they reduce resources, time, and overall costs required for a large number of samples. However, these methods could have more false negative cases and lower sensitivity. In order to maintain both accuracy and efficiency for different prevalence, we provide a novel pooling strategy based on the grid method with an extra pool set and an optimized rule inspired by the idea of error-correcting codes. The mathematical analysis shows that (i) the proposed method has the best sensitivity among all the methods we compared, if the false negative rate (FNR) of an individual test is in the range [1%, 20%] and the FNR of a pool test is closed to that of an individual test, and (ii) the proposed method is efficient when the prevalence is below 10%. Numerical simulations are also performed to confirm the theoretical derivations. In summary, the proposed method is shown to be felicitous under the above conditions in the epidemic.
We present a series of sub-wavelength annular aperture (SAA) structures with annular width equal to the tip of a tapered hollow tube, which was fabricated using a heat-pulled method. The light beams emitted from the SAA-like structures created by the tapered hollow tube produced light beams characteristic of Bessel beams. We obtained a sub-micrometer focal spot with a depth-of-focus larger than 7 μm and identified the proper structure parameters needed to generate Bessel-like light beams. Our new design has potential application to areas such as optical lithography, optical trapping, and the fabrication of high aspect ratio structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.