Photocatalysis is a classical solution to energy conversion and environmental pollution control problems. In photocatalysis, the development and exploration of new visible light catalysts and their synthesis and modification strategies are crucial. It is also essential to understand the mechanism of these reactions in the various reaction media. Recently, bismuth and graphene’s unique geometrical and electronic properties have attracted considerable attention in photocatalysis. This review summarizes bismuth-graphene nanohybrids’ synthetic processes with various design considerations, fundamental mechanisms of action, heterogeneous photocatalysis, benefits, and challenges. Some key applications in energy conversion and environmental pollution control are discussed, such as CO2 reduction, water splitting, pollutant degradation, disinfection, and organic transformations. The detailed perspective of bismuth-graphene nanohybrids’ applications in various research fields presented herein should be of equal interest to academic and industrial scientists.