Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
OBJECTIVE:Recent studies have shown that circulating microRNAs might be useful, novel biomarkers for the diagnosis of acute myocardial infarction. The aims of this study were to evaluate the expression of cardiac-specific miRNAs (miR-1, -133a, -208b, and -499) in patients with acute myocardial infarction and to compare the diagnostic values of these miRNAs with that of cardiac troponin T.METHODS:Sixty-seven plasma samples obtained from patients with acute myocardial infarction and 32 plasma specimens collected from healthy volunteers were analyzed in this study. The levels of cardiac-specific miRNAs (miR-1, -133a, -208b, and -499) were measured by quantitative reverse transcription-polymerase chain reaction, and the concentrations of plasma cardiac troponin T were measured using electrochemiluminescence-based methods and an Elecsys 2010 Immunoassay Analyzer.RESULTS:The levels of plasma miR-1, -133a, -208b, and -499 were significantly higher in acute myocardial infarction patients (all p<0.001) than in healthy volunteers. The expression of the cardiac-specific miRNAs in acute myocardial infarction patients decreased to close to the baseline levels at the time of hospital discharge (all p>0.05). There were no correlations between the levels of the four circulating miRNAs and the clinical characteristics of the study population (all p>0.05). Furthermore, receiver operating characteristic curve analyses showed that the four plasma miRNAs were not superior to cardiac troponin T for the diagnosis of acute myocardial infarction (all p>0.05).CONCLUSION:Our results demonstrate that circulating miR-1, -133a, -208b, and -499 may be useful biomarkers in acute myocardial infarction patients but that these miRNAs are not superior to cardiac troponin T for the diagnosis of acute myocardial infarction.
Recent studies have reported that miRNAs might play critical roles in acute myocardial infarction (AMI). The objective of this study is to investigate the role of miR-499-5p in AMI and its potential molecular mechanisms. The expression level of MiR-499-5p was remarkably decreased in the infarcted myocardial tissues and in the cultured neonatal rat cardiomyocytes induced by hypoxia. Overexpression or knockdown of miR-499-5p decreased or increased the apoptotic rates of cultured cardiomyocytes in vitro. In addition, ectopic overexpression of miR-499-5p in the rat AMI models with agomir reduced the myocardial infarct size through decreasing the cardiomyocytes apoptosis in the infarcted area of the rat hearts. PDCD4 (programmed cell death 4) was verified as a direct target of miR-499-5p by luciferase report assay, and ectopic overexpression or inhibition of miR-499-5p could inhibit or increase the PDCD4 expression at both the mRNA and protein levels. Furthermore, we found that ectopic overexpression of PDCD4 without miR-499-5p binding sites reversed miR-499-5p-mediated cardiomyocytes apoptosis. Together, these findings revealed the role of miR-499-5p in protecting the cardiomyocytes against apoptosis induced by AMI via its direct target PDCD4, which providing evidence for the miR-499-5p/PDCD4 pathway as a potential therapeutic target for patients with AMI.
BackgroundTumor-infiltrating lymphocytes have been reported as prognostic markers in tumors. We aimed to assess the prognostic value of total T cell (CD3+) density, cytotoxic T cell (CD8+) density and memory T cell (CD45RO+) density in patients with nasopharyngeal carcinoma (NPC).MethodsThe expression of CD3, CD8 and CD45RO was detected by immunohistochemistry in the training (n=221) and validation cohorts (n=115). The densities of these three markers were quantified by digital pathology both in the tumor and stroma. Then, we developed the immune score based on the density of these three markers and further analyzed its prognostic value.ResultsThe high density of CD3+, CD8+ and CD45RO+ T cells both in the tumor and/or stroma were significantly associated with the decrease in mortality in the training cohort, respectively. High immune score predicted a prolonged overall survival (OS) (HR 0.34, 95% CI 0.18 to 0.64, p=0.001, disease-free survival (DFS) (HR 0.44, 95% CI 0.25 to 0.78, p=0.005) and distant metastasis-free survival (DMFS) (HR 0.43, 95% CI 0.21 to 0.87, p=0.018) in NPC patients. The findings were confirmed in the validation cohort. Multivariate analysis revealed that immune score remained an independent prognostic indicator for OS, DFS and DMFS. In addition, we established a nomogram with the integration of all independent variables to predict individual risk of death.ConclusionsWe established an immune score model, which provides a reliable estimate of the risk of death, disease progress and distant metastasis in NPC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.