BackgroundNewcastle disease (ND) is an OIE listed disease caused by virulent avian paramyxovirus type 1 (APMV-1) strains, which is enzootic and causes large economic losses in the poultry sector. Genotype VII and genotype IX NDV viruses were the predominant circulating genotype in China, which may possibly be responsible for disease outbreaks in chicken flocks in recent years. While ducks and geese usually have exhibited inapparent infections.MethodsIn the present study, we investigate the complete genome sequence, the clinicopathological characterization and transmission of two virulent Newcastle disease viruses, SS-10 and NH-10, isolated from domestic ducks in Southern China in 2010.ResultsF, and the complete gene sequences based on phylogenetic analysis demonstrated that SS-10 (genotype VII) and NH-10 (genotype IX) belongs to class II. The deduced amino acid sequence was (112)R-R-Q-K/R-R-F(117) at the fusion protein cleavage site. Animal experiment results showed that the SS-10 virus isolated from ducks was highly pathogenic for chickens and geese, but low pathogenic for ducks. It could be detected from spleen, lung, kidney, trachea, small intestine, bursa of fabricius, thymus, pancreas and cecal tonsils, oropharyngeal and cloacal swabs, and could transmit to the naive contact birds. Moreover, it could transmit to chickens, ducks and geese by naive contact. However, the NH-10 virus isolated from ducks could infect some chickens, ducks and geese, but only caused chickens to die. Additionally, it could transmit to the naive contact chickens, ducks, and geese.ConclusionThe two NDV isolates exhibited different biological properties with respect to pathogenicity and transmission in chickens, ducks and geese. Therefore, no species-preference exists for chicken, duck or goose viruses and more attention should be paid to the trans-species transmission of VII NDVs between ducks, geese and chickens for the control and eradication of ND.Electronic supplementary materialThe online version of this article (doi:10.1186/1743-422X-11-147) contains supplementary material, which is available to authorized users.
Although Newcastle disease virus (NDV) with high pathogenicity has frequently been isolated in poultry in China since 1948, the mode of its transmission among avian species remains largely unknown. Given that various wild bird species have been implicated as sources of transmission, in this study we genotypically and pathotypically characterized 23 NDV isolates collected from chickens, ducks, and pigeons in live bird markets (LBMs) in South China as part of an H7N9 surveillance program during December 2013–February 2014. To simulate the natural transmission of different kinds of animals in LBMs, we selected three representative NDVs—namely, GM, YF18, and GZ289—isolated from different birds to evaluate the pathogenicity and transmission of the indicated viruses in chickens, ducks, and pigeons. Furthermore, to investigate the replication and shedding of NDV in poultry, we inoculated the chickens, ducks, and pigeons with 106 EID50 of each virus via intraocular and intranasal routes. Eight hour after infection, the naïve contact groups were housed with those inoculated with each of the viruses as a means to monitor contact transmission. Our results indicated that genetically diverse viruses circulate in LBMs in South China's Guangdong Province and that NDV from different birds have different tissue tropisms and host ranges when transmitted in different birds. We therefore propose the continuous epidemiological surveillance of LBMs to support the prevention of the spread of these viruses in different birds, especially chickens, and highlight the need for studies of the virus–host relationship.
BackgroundChickens and ducks are major hosts of Newcastle disease virus (NDV) with distinct responses to infection. However, whereas ducks are generally asymptomatic or exhibit only mild symptoms following NDV infection and are thus regarded as potential long-term reservoirs of the virus, chickens exhibit severe clinical lesions, transient infections and even death due to NDV infection. These differences may in part result from the host innate immune response to NDV infection.MethodsTo better understand the host innate immune response to NDV infection in avian species, by using the quantitative real-time polymerase chain reaction method we examined the messenger RNA expression levels of immune-related genes in chicken embryonic fibroblasts (CEFs) and duck embryonic fibroblasts (DEFs) when infected with NDV of different pathogenicities.ResultsGene expression profiles showed that the expression of IL-1beta, TNF-α-like factor (LITAF) and interferon (IFN)-beta was upregulated in both CEFs and DEFs infected with SS-10 and NH-10 viruses or treated with polyinosinic:polycytidylic acid [poly(I:C)], as well as that expression levels were greater in CEFs than in DEFs. The expression of TLR3, TLR7, IL-6, IFN-alpha, IFN-gamma, MHC-I and MHC-II, except for IL-8, were also greater in CEFs than in DEFs in response to infection to both viruses or treatment with poly(I:C). However, unlike moderate virulent NH-10, highly virulent SS-10 induced greater pattern recognition receptors and cytokines, except for IFNs, in CEFs and DEFs.ConclusionResults show distinct expression patterns of cytokines, Toll-like receptors and IFNs associated with inflammatory immune responses to NDV between species and by virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.