Nanoparticles are widely used in biomedical applications and cancer treatments due to their minute scale, multi-function, and long retention time. Among the various nanoparticles, the unique optical property derived from the localized surface plasmon resonance effect of metallic nanoparticles is a primary reason that metallic nanoparticles are researched and applied. Copper and Iron nanoparticles have the potential to generate hydroxyl radicals in excess H2O2 via Fenton or Fenton-like reactions. On the other hand, gold nanoparticles equipped with a photosensitizer can transfer the energy of photons to chemical energy and enhance the production of singlet oxygen, which is suitable for cancer treatment. With the actions of these two reactive oxygen species in the tumor microenvironment, cell apoptosis can further be induced.In this work, we first synthesized dual metal nanoparticles with poly[styrene-alt-(maleic acid, sodium salt)( Cu ferrite@PSMA) by a simple one-step hydrothermal reduction reaction. Then, gold(III) was reduced and doped into the structure, which formed a triple metal structure, Au-doped Cu ferrite nanoparticles (Au/Cu ferrite@PSMA NPs). The metal ratio of the product could be controlled by manipulating the Fe/Cu ratio of reactants and the sequence of addition of reactants. The core-shell structure was verified by transmission electron microscopy. Moreover, the hydroxyl radical and singlet oxygen generation ability of Au/Cu ferrite@PSMA was proved. The chemodynamic and photodynamic effect was measured, and the in vitro ROS generation was observed. Furthermore, the behavior of endocytosis by cancer cells could be controlled by the magnetic field. The result indicated that Au/Cu ferrite@PSMA is a potential agent for chemodynamic/photodynamic synergetic therapy.
Nanoparticles are widely used in biomedical applications and cancer treatments due to their minute scale, multi-function, and long retention time. Among the various nanoparticles, the unique optical property derived from the localized surface plasmon resonance effect of metallic nanoparticles is a primary reason that metallic nanoparticles are researched and applied. Copper and Iron nanoparticles have the potential to generate hydroxyl radicals in excess H2O2 via Fenton or Fenton-like reactions. On the other hand, gold nanoparticles equipped with a photosensitizer can transfer the energy of photons to chemical energy and enhance the production of singlet oxygen, which is suitable for cancer treatment. With the actions of these two reactive oxygen species in the tumor microenvironment, cell apoptosis can further be induced. In this work, we first synthesized dual metal nanoparticles with poly[styrene-alt-(maleic acid, sodium salt)(Cu ferrite oxide-polymer) by a simple one-step hydrothermal reduction reaction. Then, gold(III) was reduced and doped into the structure, which formed a triple metal structure, Au-doped Cu ferrite nanoparticles (Au/Cu ferrite oxide-polymer NPs). The metal ratio of the product could be controlled by manipulating the Fe/Cu ratio of reactants and the sequence of addition of reactants. The core–shell structure was verified by transmission electron microscopy. Moreover, the hydroxyl radical and singlet oxygen generation ability of Au/Cu ferrite oxide-polymer was proved. The chemodynamic and photodynamic effect was measured, and the in vitro ROS generation was observed. Furthermore, the behavior of endocytosis by cancer cells could be controlled by the magnetic field. The result indicated that Au/Cu ferrite oxide-polymer core–shell nanoreactor is a potential agent for chemodynamic/photodynamic synergetic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.